找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Linear Algebra; From the Beginnings Toshitsune Miyake Textbook 2022 The Editor(s) (if applicable) and The Author(s), under exclusive licen

[復(fù)制鏈接]
查看: 53547|回復(fù): 42
樓主
發(fā)表于 2025-3-21 16:19:35 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Linear Algebra
副標(biāo)題From the Beginnings
編輯Toshitsune Miyake
視頻videohttp://file.papertrans.cn/587/586257/586257.mp4
概述Defines matrices and explains the main topics of linear algebra such as vector spaces and linear mappings.Starts from beginner‘s level and comes to advanced topics such as inner products or the Jordan
圖書封面Titlebook: Linear Algebra; From the Beginnings  Toshitsune Miyake Textbook 2022 The Editor(s) (if applicable) and The Author(s), under exclusive licen
描述The purpose of this book is to explain linear algebra clearly for beginners. In doing so, the author states and explains somewhat advanced topics such as Hermitian products and Jordan normal forms. Starting from the definition of matrices, it is made clear with examples that matrices and matrix operation are abstractions of tables and operations of tables. The author also maintains that systems of linear equations are the starting point of linear algebra, and linear algebra and linear equations are closely connected. The solutions to systems of linear equations are found by solving matrix equations in the row-reduction of matrices, equivalent to the Gauss elimination method of solving systems of linear equations. The row-reductions play important roles in calculation in this book. To calculate row-reductions of matrices, the matrices are arranged vertically, which is seldom seen but is convenient for calculation. Regular matrices and determinants of matrices are defined and explained. Furthermore, the resultants of polynomials are discussed as an application of determinants. Next, abstract vector spaces over a field .K. are defined. In the book, however, mainly vector spaces are co
出版日期Textbook 2022
關(guān)鍵詞matrices and system of linear equations; row-reductions of matrices and determinants of matrices; vect
版次1
doihttps://doi.org/10.1007/978-981-16-6994-1
isbn_softcover978-981-16-6996-5
isbn_ebook978-981-16-6994-1
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Linear Algebra影響因子(影響力)




書目名稱Linear Algebra影響因子(影響力)學(xué)科排名




書目名稱Linear Algebra網(wǎng)絡(luò)公開度




書目名稱Linear Algebra網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Linear Algebra被引頻次




書目名稱Linear Algebra被引頻次學(xué)科排名




書目名稱Linear Algebra年度引用




書目名稱Linear Algebra年度引用學(xué)科排名




書目名稱Linear Algebra讀者反饋




書目名稱Linear Algebra讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:39:48 | 只看該作者
https://doi.org/10.1007/978-981-16-6994-1matrices and system of linear equations; row-reductions of matrices and determinants of matrices; vect
板凳
發(fā)表于 2025-3-22 01:04:38 | 只看該作者
地板
發(fā)表于 2025-3-22 07:02:17 | 只看該作者
http://image.papertrans.cn/l/image/586257.jpg
5#
發(fā)表于 2025-3-22 12:01:54 | 只看該作者
Matrices,It would be very convenient if we could treat a bundle of several numbers as one number. For such a purpose, we consider matrices and numerical vectors.
6#
發(fā)表于 2025-3-22 13:33:26 | 只看該作者
7#
發(fā)表于 2025-3-22 20:19:13 | 只看該作者
Determinants,Before explaining determinants, we begin with defining permutations of finite elements. Let . be a set of . elements .. Replacements of elements in . are called . of . elements. Permutations are considered as mappings of . into itself.
8#
發(fā)表于 2025-3-22 22:18:08 | 只看該作者
Vector Spaces,A non-empty set . is called a . when?it has basic operations, addition and multiplication, satisfying the following properties. Here .,?.,?. are elements of ..
9#
發(fā)表于 2025-3-23 01:59:42 | 只看該作者
Linear Mappings,One of the simplest functions of real numbers is a proportional function .. Linear mappings can be considered as a generalization of proportional functions to higher-dimensional spaces.
10#
發(fā)表于 2025-3-23 08:36:23 | 只看該作者
Inner Product Spaces,In this chapter, we define and explain the inner products on vector spaces over the real number field .. The matrices we consider are real matrices unless otherwise stated.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 21:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
射洪县| 咸阳市| 辽宁省| 凤山市| 邵东县| 轮台县| 波密县| 新巴尔虎左旗| 宜宾县| 铜山县| 白玉县| 洛宁县| 定南县| 赤峰市| 昔阳县| 镇坪县| 都江堰市| 灵石县| 平武县| 新建县| 辽中县| 洱源县| 洪泽县| 库车县| 原阳县| 徐州市| 遵义县| 东港市| 从江县| 乌鲁木齐市| 长白| 威远县| 夏河县| 井冈山市| 屏南县| 寻甸| 泰和县| 和林格尔县| 洛隆县| 玉屏| 柏乡县|