找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Linear Algebra; J. H. Wilkinson,C. Reinsch,F. L. Bauer (Chief edit Book 1971 Springer-Verlag Berlin Heidelberg 1971 algebra.linear algebra

[復(fù)制鏈接]
樓主: Coenzyme
11#
發(fā)表于 2025-3-23 12:55:40 | 只看該作者
12#
發(fā)表于 2025-3-23 14:48:14 | 只看該作者
13#
發(fā)表于 2025-3-23 21:25:51 | 只看該作者
The , and , Algorithms for Symmetric Matricesis unitary and . is upper-triangular then . that is, . is unitarily similar to . By repeated application of the above result a sequence of matrices which are unitarily similar to a given matrix .. may be derived from the relations . and, in general, .. tends to upper-triangular form.
14#
發(fā)表于 2025-3-24 02:05:38 | 只看該作者
15#
發(fā)表于 2025-3-24 03:53:30 | 只看該作者
Rational , Transformation with Newton Shift for Symmetric Tridiagonal Matricesroughout the iteration. Thus, the . step may be achieved by two successive Cholesky . steps or equivalently, since the matrix is tridiagonal, by two . steps which are numerically stable [4] and avoid square roots. The rational . step used here needs slightly fewer additions than the Ortega-Kaiser step [3].
16#
發(fā)表于 2025-3-24 06:40:58 | 只看該作者
Handbook for Automatic Computationhttp://image.papertrans.cn/l/image/586252.jpg
17#
發(fā)表于 2025-3-24 11:22:04 | 只看該作者
https://doi.org/10.1007/978-3-662-39778-7algebra; linear algebra; mathematics; optimization; matrix theory
18#
發(fā)表于 2025-3-24 15:00:46 | 只看該作者
Iterative Refinement of the Solution of a Positive Definite System of Equations based on the Cholesky factorization of . is ill-conditioned the computed solution may not be sufficiently accurate, but (provided . is not almost singular to working accuracy) it may be improved by an iterative procedure in which the Cholesky decomposition is used repeatedly.
19#
發(fā)表于 2025-3-24 19:20:56 | 只看該作者
20#
發(fā)表于 2025-3-25 02:22:24 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 20:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新竹县| 赞皇县| 恭城| 阿克| 鄯善县| 锦州市| 沧州市| 卓资县| 松溪县| 扎兰屯市| 吴堡县| 铜陵市| 明水县| 凉城县| 大兴区| 铁力市| 巴南区| 迁安市| 忻州市| 土默特左旗| 津南区| 盐池县| 任丘市| 黑山县| 柏乡县| 吉水县| 金川县| 共和县| 甘孜| 鄯善县| 安达市| 巴里| 枝江市| 顺义区| 鹤壁市| 固阳县| 南宁市| 苍梧县| 铁岭县| 灵山县| 德保县|