找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Linear Algebra; Werner Greub Textbook 1975Latest edition Springer Science+Business Media New York 1975 Matrix.algebra.automorphism.field.l

[復(fù)制鏈接]
查看: 45770|回復(fù): 48
樓主
發(fā)表于 2025-3-21 19:02:04 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Linear Algebra
編輯Werner Greub
視頻videohttp://file.papertrans.cn/587/586251/586251.mp4
叢書(shū)名稱(chēng)Graduate Texts in Mathematics
圖書(shū)封面Titlebook: Linear Algebra;  Werner Greub Textbook 1975Latest edition Springer Science+Business Media New York 1975 Matrix.algebra.automorphism.field.l
描述This textbook gives a detailed and comprehensive presentation of linear algebra based on an axiomatic treatment of linear spaces. For this fourth edition some new material has been added to the text, for instance, the intrinsic treatment of the classical adjoint of a linear transformation in Chapter IV, as well as the discussion of quaternions and the classifica- tion of associative division algebras in Chapter VII. Chapters XII and XIII have been substantially rewritten for the sake of clarity, but the contents remain basically the same as before. Finally, a number of problems covering new topics-e.g. complex structures, Caylay numbers and symplectic spaces - have been added. I should like to thank Mr. M. L. Johnson who made many useful suggestions for the problems in the third edition. I am also grateful to my colleague S. Halperin who assisted in the revision of Chapters XII and XIII and to Mr. F. Gomez who helped to prepare the subject index. Finally, I have to express my deep gratitude to my colleague J. R. Van- stone who worked closely with me in the preparation of all the revisions and additions and who generously helped with the proof reading.
出版日期Textbook 1975Latest edition
關(guān)鍵詞Matrix; algebra; automorphism; field; linear algebra; matrices; transformation; matrix theory
版次4
doihttps://doi.org/10.1007/978-1-4684-9446-4
isbn_softcover978-1-4684-9448-8
isbn_ebook978-1-4684-9446-4Series ISSN 0072-5285 Series E-ISSN 2197-5612
issn_series 0072-5285
copyrightSpringer Science+Business Media New York 1975
The information of publication is updating

書(shū)目名稱(chēng)Linear Algebra影響因子(影響力)




書(shū)目名稱(chēng)Linear Algebra影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Linear Algebra網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Linear Algebra網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Linear Algebra被引頻次




書(shū)目名稱(chēng)Linear Algebra被引頻次學(xué)科排名




書(shū)目名稱(chēng)Linear Algebra年度引用




書(shū)目名稱(chēng)Linear Algebra年度引用學(xué)科排名




書(shū)目名稱(chēng)Linear Algebra讀者反饋




書(shū)目名稱(chēng)Linear Algebra讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:57:25 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:13:23 | 只看該作者
Theory of a linear transformation, . be the minimum polynomial of .. Since .(.) is non-trivial and has finite dimension, it follows that deg . ≧ 1 (cf. sec. 12.11). The minimum polynomial of the zero transformation is . whereas the minimum polynomial of the identity map is .-1.
地板
發(fā)表于 2025-3-22 05:29:38 | 只看該作者
5#
發(fā)表于 2025-3-22 11:21:37 | 只看該作者
6#
發(fā)表于 2025-3-22 14:14:13 | 只看該作者
https://doi.org/10.1007/978-1-4684-9446-4Matrix; algebra; automorphism; field; linear algebra; matrices; transformation; matrix theory
7#
發(fā)表于 2025-3-22 18:46:10 | 只看該作者
Linear Mappings,Suppose . are vector spaces and let .: . be a linear mapping. Then the . of ., denoted by ker ., is the subset of vectors . such that . = 0. It follows from (1.8) and (1.9) that ker . is a subspace of ..
8#
發(fā)表于 2025-3-22 22:20:31 | 只看該作者
9#
發(fā)表于 2025-3-23 05:05:01 | 只看該作者
10#
發(fā)表于 2025-3-23 08:51:55 | 只看該作者
Algebras,An ., is a vector space together with a mapping . × . such that the conditions (.) and (.) below both hold. The image of two vectors ., under this mapping is called the . of . and . and will be denoted by ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 03:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
航空| 金川县| 吉木萨尔县| 双辽市| 大丰市| 九龙县| 孝义市| 东方市| 汝阳县| 商丘市| 育儿| 登封市| 朝阳市| 民权县| 陇西县| 张掖市| 永嘉县| 浠水县| 疏附县| 江西省| 大余县| 江永县| 喀什市| 彰武县| 南投县| 崇明县| 马鞍山市| 临颍县| 屏山县| 清水县| 察隅县| 南投市| 措勤县| 洛隆县| 山西省| 北安市| 闸北区| 吴江市| 穆棱市| 涿鹿县| 张北县|