找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Linear Algebra; Larry Smith Textbook 19781st edition Springer-Verlag, New York Inc. 1978 Eigenvalue.Eigenvector.Lineare Algebra.Vector spa

[復(fù)制鏈接]
樓主: 生動(dòng)
51#
發(fā)表于 2025-3-30 08:39:25 | 只看該作者
52#
發(fā)表于 2025-3-30 16:03:28 | 只看該作者
53#
發(fā)表于 2025-3-30 18:50:01 | 只看該作者
Matrices,In the last chapter we saw that a linear transformation . : ?. → ?. could be represented (that is, was completely determined by) 9 numbers arranged in a 3 × 3 array. In this chapter we will study such arrays, which are called matrices. We will return to the connection between matrices and linear transformations in the next chapter.
54#
發(fā)表于 2025-3-30 21:25:31 | 只看該作者
55#
發(fā)表于 2025-3-31 01:20:25 | 只看該作者
More on representing linear transformations by matrices,Our purpose in this chapter is to develop further the theory and technique of representing linear transformations by matrices. We will touch on several scattered topics and techniques. It is to be emphasized that we are only scratching the surface of an iceberg!
56#
發(fā)表于 2025-3-31 07:32:37 | 只看該作者
Systems of linear equations,In the historical development of linear algebra the geometry of linear transformations and the algebra of systems of linear equations played significant and important rolls.
57#
發(fā)表于 2025-3-31 10:01:21 | 只看該作者
The elements of eigenvalue and eigenvector theory,Suppose that . is a linear transformation of the vector space . to itself. Such linear transformations have a special name (because their domain and range space are the same), they are called ..
58#
發(fā)表于 2025-3-31 15:25:09 | 只看該作者
59#
發(fā)表于 2025-3-31 17:53:37 | 只看該作者
Inner product spaces,rtant parts in the further development of linear algebra and it is now time to introduce these ingredients into our study. There are many ways to do this and in the approach that we will follow both length and angle will be derived from a more fundamental concept called a . or . product of two vectors.
60#
發(fā)表于 2025-3-31 22:48:44 | 只看該作者
The spectral theorem and quadratic forms,rm. There is in fact a good reason for this and it is tied up with our work of the last chapter. For example we might propose to study those linear transformations whose matrix is symmetric. We would therefore like to introduce the following:
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 02:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
澎湖县| 韶关市| 牙克石市| 调兵山市| 荣成市| 大兴区| 乳源| 上蔡县| 东乡| 闸北区| 永登县| 邵阳县| 六盘水市| 玉门市| 玉环县| 礼泉县| 和静县| 东海县| 巢湖市| 师宗县| 英德市| 万盛区| 江油市| 阳江市| 浙江省| 南皮县| 美姑县| 琼中| 仙桃市| 元氏县| 岳阳县| 松桃| 辽宁省| 翁源县| 都兰县| 上犹县| 平南县| 洪江市| 临武县| 建瓯市| 临沧市|