找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Linear Algebra; Henry Helson Book 1994Latest edition Hindustan Book Agency 1994 Linear Algebra.Algebra.Mathemtics.Analysis.Computation.mat

[復(fù)制鏈接]
查看: 32094|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:47:02 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Linear Algebra
編輯Henry Helson
視頻videohttp://file.papertrans.cn/587/586240/586240.mp4
叢書名稱Texts and Readings in Mathematics
圖書封面Titlebook: Linear Algebra;  Henry Helson Book 1994Latest edition Hindustan Book Agency 1994 Linear Algebra.Algebra.Mathemtics.Analysis.Computation.mat
描述Linear Algebra is an important part of pure mathematics, and is needed for applications in every part of mathematics, natural science and economics. However, the applications are not so obvious as those of calculus. Therefore, one must study Linear Algebra as pure mathematics, even if one is only interested in applications. Most students find the subject difficult because it is abstract. Many texts try to avoid the difficulty by emphasizing calculations and suppressing the mathematical content of the subject. This text proceeds from the view that it is best to present the difficulties honestly, but as concisely and simply as possible. Although the text is shorter than others, all the material of a semester course is included. In addition, there are sections on least squares approximation and factor analysis; and a final chapter presents the matrix factorings that are used in Numerical Analysis.
出版日期Book 1994Latest edition
關(guān)鍵詞Linear Algebra; Algebra; Mathemtics; Analysis; Computation; matrix theory
版次2
doihttps://doi.org/10.1007/978-981-10-4487-8
isbn_ebook978-981-10-4487-8
copyrightHindustan Book Agency 1994
The information of publication is updating

書目名稱Linear Algebra影響因子(影響力)




書目名稱Linear Algebra影響因子(影響力)學(xué)科排名




書目名稱Linear Algebra網(wǎng)絡(luò)公開度




書目名稱Linear Algebra網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Linear Algebra被引頻次




書目名稱Linear Algebra被引頻次學(xué)科排名




書目名稱Linear Algebra年度引用




書目名稱Linear Algebra年度引用學(xué)科排名




書目名稱Linear Algebra讀者反饋




書目名稱Linear Algebra讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:44:00 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:28:45 | 只看該作者
Matrices and Linear Equations,Algebra is one of the great branches of mathematics, with analysis, geometry, number theory and foundations. Its origins are in antiquity. During the nineteenth century, like analysis, it blossomed in a remarkable way, and in this century it continues vigorous growth in both pure and applied directions.
地板
發(fā)表于 2025-3-22 04:47:05 | 只看該作者
Vector Spaces,Now we are ready to build a house of abstraction into which the furniture of the last chapter will fit.
5#
發(fā)表于 2025-3-22 10:20:23 | 只看該作者
Linear Transformations,A . from a vector space . to another (or the same) vector space . is a function . from . into . such that.for all ., . in . and all scalars .. (. and . can be either real or complex vector spaces, but both of the same type.)
6#
發(fā)表于 2025-3-22 15:22:46 | 只看該作者
7#
發(fā)表于 2025-3-22 19:30:11 | 只看該作者
8#
發(fā)表于 2025-3-22 21:16:41 | 只看該作者
9#
發(fā)表于 2025-3-23 04:27:50 | 只看該作者
Reduction of Matrices,ransformation in some basis has a special form, for example if it is diagonal, then we can say something about how the transformation acts. Equivalently, if a given matrix is similar to a matrix of a special kind, then the linear transformation it determines (in any basis) will be special in a corresponding way.
10#
發(fā)表于 2025-3-23 08:54:31 | 只看該作者
https://doi.org/10.1007/978-981-10-4487-8Linear Algebra; Algebra; Mathemtics; Analysis; Computation; matrix theory
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 00:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
贵德县| 宝山区| 多伦县| 乡宁县| 奉化市| 巩义市| 大兴区| 万荣县| 甘德县| 错那县| 来凤县| 睢宁县| 柳林县| 荥经县| 林西县| 黄冈市| 古交市| 铁岭市| 新龙县| 杭州市| 盐亭县| 厦门市| 兴义市| 武川县| 绥滨县| 兴文县| 页游| 华容县| 施秉县| 陕西省| 中宁县| 顺义区| 琼结县| 漾濞| 互助| 西宁市| 雅安市| 浦江县| 崇文区| 东明县| 盐城市|