找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Limit Theorems for Some Long Range Random Walks on Torsion Free Nilpotent Groups; Zhen-Qing Chen,Takashi Kumagai,Tianyi Zheng Book 2023 Th

[復制鏈接]
樓主: 柳條筐
21#
發(fā)表于 2025-3-25 04:07:29 | 只看該作者
Measures in , and Their Geometries,sures on .. For each measure . in ., a particular “geometry” associated with . is defined. This geometry will later be the key needed to understand how to define norms and appropriate approximate dilations adapted to the measure . in order to apply the limit theorems of Chaps. . and ..
22#
發(fā)表于 2025-3-25 09:55:06 | 只看該作者
23#
發(fā)表于 2025-3-25 13:53:32 | 只看該作者
The Main Results for Random Walks Driven by Measures in ,ability measures in .. This chapter is devoted to verifying that such probability measures satisfy the properties set forth in Chaps. . and ., properties that were proved in those chapters to be sufficient to obtain both a functional limit theorem (Theorem .) and a local limit theorem (Theorem .). T
24#
發(fā)表于 2025-3-25 19:52:09 | 只看該作者
25#
發(fā)表于 2025-3-25 20:49:59 | 只看該作者
978-3-031-43331-3The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
26#
發(fā)表于 2025-3-26 02:43:01 | 只看該作者
27#
發(fā)表于 2025-3-26 07:03:03 | 只看該作者
28#
發(fā)表于 2025-3-26 11:46:58 | 只看該作者
Polynomial Coordinates and Approximate Dilations,a suitable dilation structures is key to the formulation of limit theorems for random walks on groups. One of the main tools used in this book is the notion of approximate group dilations. The limit group structures that appear when one uses rescaling associated with approximate group dilations are discussed.
29#
發(fā)表于 2025-3-26 13:03:46 | 只看該作者
Vague Convergence and Change of Group Law,ated with the driving probability measure of a long-range random walk to the vague convergence of the associated jump kernels. This involves taking into account the change of group law induced by the rescaling of space through an approximate group dilation.
30#
發(fā)表于 2025-3-26 17:36:12 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 03:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
临清市| 辽宁省| 陵川县| 抚宁县| 汕头市| 敦化市| 东光县| 合作市| 冕宁县| 绥棱县| 梅州市| 延边| 永康市| 中西区| 石景山区| 屏山县| 黑山县| 连州市| 徐州市| 水富县| 时尚| 青阳县| 新宾| 安仁县| 晴隆县| 台东市| 新建县| 浦北县| 富平县| 昭苏县| 蚌埠市| 修武县| 濮阳县| 建平县| 镇原县| 微博| 枝江市| 郎溪县| 玉门市| 齐河县| 江都市|