找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Limit Theorems for Some Long Range Random Walks on Torsion Free Nilpotent Groups; Zhen-Qing Chen,Takashi Kumagai,Tianyi Zheng Book 2023 Th

[復(fù)制鏈接]
樓主: 柳條筐
21#
發(fā)表于 2025-3-25 04:07:29 | 只看該作者
Measures in , and Their Geometries,sures on .. For each measure . in ., a particular “geometry” associated with . is defined. This geometry will later be the key needed to understand how to define norms and appropriate approximate dilations adapted to the measure . in order to apply the limit theorems of Chaps. . and ..
22#
發(fā)表于 2025-3-25 09:55:06 | 只看該作者
23#
發(fā)表于 2025-3-25 13:53:32 | 只看該作者
The Main Results for Random Walks Driven by Measures in ,ability measures in .. This chapter is devoted to verifying that such probability measures satisfy the properties set forth in Chaps. . and ., properties that were proved in those chapters to be sufficient to obtain both a functional limit theorem (Theorem .) and a local limit theorem (Theorem .). T
24#
發(fā)表于 2025-3-25 19:52:09 | 只看該作者
25#
發(fā)表于 2025-3-25 20:49:59 | 只看該作者
978-3-031-43331-3The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
26#
發(fā)表于 2025-3-26 02:43:01 | 只看該作者
27#
發(fā)表于 2025-3-26 07:03:03 | 只看該作者
28#
發(fā)表于 2025-3-26 11:46:58 | 只看該作者
Polynomial Coordinates and Approximate Dilations,a suitable dilation structures is key to the formulation of limit theorems for random walks on groups. One of the main tools used in this book is the notion of approximate group dilations. The limit group structures that appear when one uses rescaling associated with approximate group dilations are discussed.
29#
發(fā)表于 2025-3-26 13:03:46 | 只看該作者
Vague Convergence and Change of Group Law,ated with the driving probability measure of a long-range random walk to the vague convergence of the associated jump kernels. This involves taking into account the change of group law induced by the rescaling of space through an approximate group dilation.
30#
發(fā)表于 2025-3-26 17:36:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 10:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
双城市| 旬阳县| 岐山县| 德保县| 堆龙德庆县| 永吉县| 南充市| 依兰县| 剑阁县| 九龙县| 庆安县| 黑水县| 平利县| 福州市| 南充市| 尖扎县| 东宁县| 天长市| 仪征市| 南宫市| 敦煌市| 罗定市| 翁源县| 多伦县| 那曲县| 军事| 读书| 尼勒克县| 杭锦后旗| 伊春市| 辽中县| 乌海市| 龙江县| 滦南县| 金秀| 高密市| 太和县| 布尔津县| 廉江市| 土默特右旗| 肇源县|