找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Limit Theorems for Multi-Indexed Sums of Random Variables; Oleg Klesov Book 2014 Springer-Verlag Berlin Heidelberg 2014 60F15, 60F05, 60F1

[復(fù)制鏈接]
41#
發(fā)表于 2025-3-28 17:49:29 | 只看該作者
The Strong Law of Large Numbers for Independent Random Variables,The celebrated . is a masterpiece on the strong law of large numbers for cumulative sums of independent random variables.
42#
發(fā)表于 2025-3-28 18:46:27 | 只看該作者
43#
發(fā)表于 2025-3-29 02:30:50 | 只看該作者
The Law of the Iterated Logarithm,The first law of the iterated logarithm is proved for symmetric Bernoulli random variables, that is, for independent random
44#
發(fā)表于 2025-3-29 03:41:15 | 只看該作者
45#
發(fā)表于 2025-3-29 07:15:56 | 只看該作者
46#
發(fā)表于 2025-3-29 12:44:54 | 只看該作者
Boundedness of Multi-Indexed Series of Independent Random Variables,?Example?6.1). The aim of this chapter is to find necessary and sufficient conditions for the boundedness of partial sums of a multi-indexed series and to establish a relationship between the convergence and boundedness for all ..
47#
發(fā)表于 2025-3-29 19:11:13 | 只看該作者
48#
發(fā)表于 2025-3-29 20:56:52 | 只看該作者
Limit Theorems for Multi-Indexed Sums of Random Variables978-3-662-44388-0Series ISSN 2199-3130 Series E-ISSN 2199-3149
49#
發(fā)表于 2025-3-30 00:38:11 | 只看該作者
Some Remarks on the Theory of Limit Theorems for Multi-Indexed Sums, in more detail one of the results for multi-indexed sums that indeed follows easily from its classical counterpart (this is an example that supports the above mentioned point of view). Then we explain why this is not a universal phenomenon.
50#
發(fā)表于 2025-3-30 04:07:37 | 只看該作者
Renewal Theorems for Random Walks with Multi-Dimensional Time,classical case. It is worth mentioning that more complicated questions on the rate of convergence of renewal functions and processes constructed from multi-indexed sums of random variables still have no definite answers, since they depend on the Riemann hypothesis.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 17:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
石屏县| 乃东县| 阜平县| 呈贡县| 宜章县| 广宁县| 余江县| 鸡西市| 临泽县| 囊谦县| 开平市| 清徐县| 洱源县| 长岛县| 浪卡子县| 赞皇县| 合川市| 台东市| 巴彦县| 兴业县| 洛浦县| 新河县| 郓城县| 益阳市| 共和县| 贡山| 明星| 清水县| 砚山县| 景洪市| 新蔡县| 全南县| 新郑市| 车致| 行唐县| 新河县| 双城市| 松江区| 青神县| 疏附县| 阿图什市|