找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Limit Cycles of Differential Equations; Colin Christopher,Chengzhi Li Textbook 20071st edition Birkh?user Basel 2007 Abelian integral.Cent

[復制鏈接]
樓主: INFER
41#
發(fā)表于 2025-3-28 14:42:32 | 只看該作者
Darboux IntegrabilityIn this chapter, we consider one of the two main mechanisms which seem to underlie the existence of centers in polynomial vector fields. We only hint at the historical side, which is covered in detail by Schlomiuk [57].
42#
發(fā)表于 2025-3-28 21:48:18 | 只看該作者
43#
發(fā)表于 2025-3-28 23:01:18 | 只看該作者
SymmetryIn this chapter we consider the second mechanism which gives rise to centers in polynomial systems: the existence of an algebraic symmetry.
44#
發(fā)表于 2025-3-29 04:19:02 | 只看該作者
45#
發(fā)表于 2025-3-29 08:35:05 | 只看該作者
Monodromy of Hyperelliptic Abelian IntegralsWe want to show that in the case of Hamiltonians of the form . where .(.) is a polynomial of degree ., the existence of a tangential center implies that either . is relatively exact, or the polynomial .(.) is .. That is, it can be expressed as a polynomial of a polynomial, .(.) = .(.(.)), in a non-trivial way.
46#
發(fā)表于 2025-3-29 15:13:26 | 只看該作者
47#
發(fā)表于 2025-3-29 16:47:13 | 只看該作者
48#
發(fā)表于 2025-3-29 21:36:50 | 只看該作者
49#
發(fā)表于 2025-3-30 03:46:20 | 只看該作者
Monodromybut even if we could do so, the first integral would certainly ramify as a global object. Our desire would then be to read off some important information about the system from this global ramification.
50#
發(fā)表于 2025-3-30 06:47:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 09:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
武定县| 肇东市| 上思县| 河东区| 赤峰市| 宜君县| 九江市| 巧家县| 绍兴市| 中牟县| 公安县| 乐陵市| 桃源县| 津市市| 黑河市| 赞皇县| 北辰区| 五指山市| 平潭县| 淄博市| 黄浦区| 措美县| 长宁县| 浦城县| 佛坪县| 乐昌市| 广西| 泸溪县| 晋州市| 新巴尔虎左旗| 呼伦贝尔市| 蓬莱市| 贵州省| 乌拉特中旗| 义马市| 潼南县| 图片| 温州市| 武夷山市| 金山区| 收藏|