找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Limit Cycles of Differential Equations; Colin Christopher,Chengzhi Li Textbook 20071st edition Birkh?user Basel 2007 Abelian integral.Cent

[復(fù)制鏈接]
樓主: INFER
41#
發(fā)表于 2025-3-28 14:42:32 | 只看該作者
Darboux IntegrabilityIn this chapter, we consider one of the two main mechanisms which seem to underlie the existence of centers in polynomial vector fields. We only hint at the historical side, which is covered in detail by Schlomiuk [57].
42#
發(fā)表于 2025-3-28 21:48:18 | 只看該作者
43#
發(fā)表于 2025-3-28 23:01:18 | 只看該作者
SymmetryIn this chapter we consider the second mechanism which gives rise to centers in polynomial systems: the existence of an algebraic symmetry.
44#
發(fā)表于 2025-3-29 04:19:02 | 只看該作者
45#
發(fā)表于 2025-3-29 08:35:05 | 只看該作者
Monodromy of Hyperelliptic Abelian IntegralsWe want to show that in the case of Hamiltonians of the form . where .(.) is a polynomial of degree ., the existence of a tangential center implies that either . is relatively exact, or the polynomial .(.) is .. That is, it can be expressed as a polynomial of a polynomial, .(.) = .(.(.)), in a non-trivial way.
46#
發(fā)表于 2025-3-29 15:13:26 | 只看該作者
47#
發(fā)表于 2025-3-29 16:47:13 | 只看該作者
48#
發(fā)表于 2025-3-29 21:36:50 | 只看該作者
49#
發(fā)表于 2025-3-30 03:46:20 | 只看該作者
Monodromybut even if we could do so, the first integral would certainly ramify as a global object. Our desire would then be to read off some important information about the system from this global ramification.
50#
發(fā)表于 2025-3-30 06:47:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 11:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长泰县| 界首市| 清水县| 建德市| 应用必备| 涟源市| 新巴尔虎右旗| 张家口市| 襄汾县| 齐齐哈尔市| 贵港市| 东安县| 祁东县| 邵武市| 玉龙| 西乌| 沙雅县| 余庆县| 瑞丽市| 高密市| 霸州市| 牟定县| 京山县| 晋城| 宾川县| 车致| 开原市| 化州市| 巍山| 邛崃市| 融水| 桓台县| 达孜县| 安多县| 长子县| 阿拉善右旗| 茂名市| 花垣县| 赤壁市| 汤阴县| 三台县|