找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Limit Cycles of Differential Equations; Colin Christopher,Chengzhi Li,Joan Torregrosa Textbook 2024Latest edition Springer Nature Switzerl

[復(fù)制鏈接]
查看: 40319|回復(fù): 57
樓主
發(fā)表于 2025-3-21 16:26:39 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Limit Cycles of Differential Equations
編輯Colin Christopher,Chengzhi Li,Joan Torregrosa
視頻videohttp://file.papertrans.cn/587/586154/586154.mp4
概述Gives a survey of current areas of active research.Written in an approachable manner suitable for graduate students.Provides updates, further clarifications and remarks
叢書名稱Advanced Courses in Mathematics - CRM Barcelona
圖書封面Titlebook: Limit Cycles of Differential Equations;  Colin Christopher,Chengzhi Li,Joan Torregrosa Textbook 2024Latest edition Springer Nature Switzerl
描述.This textbook contains the lecture series originally delivered at the "Advanced Course on Limit Cycles of Differential Equations" in the Centre de Recerca Matemàtica Barcelona in 2006..The topics covered are the center-focus problem for polynomial vector fields, and the application of Abelian integrals to limit cycle bifurcations. Both topics are related to Hilbert‘s sixteenth problem. In particular, the book will?be?of interest to students and researchers working?in the qualitative theory of dynamical systems..This second?edition provides updates, further clarifications and remarks, and includes an expanded list of references..
出版日期Textbook 2024Latest edition
關(guān)鍵詞Abelian integral; Center-focus problem; Differential equation; Hilbert‘s 16th problem; Limit cycle; dynam
版次2
doihttps://doi.org/10.1007/978-3-030-59656-9
isbn_softcover978-3-030-59655-2
isbn_ebook978-3-030-59656-9Series ISSN 2297-0304 Series E-ISSN 2297-0312
issn_series 2297-0304
copyrightSpringer Nature Switzerland AG 2024
The information of publication is updating

書目名稱Limit Cycles of Differential Equations影響因子(影響力)




書目名稱Limit Cycles of Differential Equations影響因子(影響力)學(xué)科排名




書目名稱Limit Cycles of Differential Equations網(wǎng)絡(luò)公開度




書目名稱Limit Cycles of Differential Equations網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Limit Cycles of Differential Equations被引頻次




書目名稱Limit Cycles of Differential Equations被引頻次學(xué)科排名




書目名稱Limit Cycles of Differential Equations年度引用




書目名稱Limit Cycles of Differential Equations年度引用學(xué)科排名




書目名稱Limit Cycles of Differential Equations讀者反饋




書目名稱Limit Cycles of Differential Equations讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:40:08 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:57:13 | 只看該作者
Limit Cycles of Differential Equations978-3-030-59656-9Series ISSN 2297-0304 Series E-ISSN 2297-0312
地板
發(fā)表于 2025-3-22 07:11:22 | 只看該作者
Chapter 8 Monodromy of Hyperelliptic Abelian Integralsat the perturbation terms would have to be relatively exact. In Case (ii) we show later that the 1-form given by the perturbation terms will be the sum of a relatively exact term and the pull back of a 1-form on the factorized space.
5#
發(fā)表于 2025-3-22 12:18:41 | 只看該作者
6#
發(fā)表于 2025-3-22 15:44:57 | 只看該作者
7#
發(fā)表于 2025-3-22 19:32:00 | 只看該作者
Chapter 1 Centers and Limit CyclesIn this chapter I want to give a general background to the center-focus problem, and then to show why the problem is interesting: both in what it tells us about the distinctive algebraic features of polynomial vector fields, and also in the simple concrete estimates it gives of the number of limit cycles which can exist in these vector fields.
8#
發(fā)表于 2025-3-22 22:37:35 | 只看該作者
Chapter 2 Darboux IntegrabilityIn this chapter, we consider one of the two main mechanisms which seem to underlie the existence of centers in polynomial vector fields. The background and history to this topic is covered in detail by Schlomiuk [117].
9#
發(fā)表于 2025-3-23 02:14:01 | 只看該作者
10#
發(fā)表于 2025-3-23 06:08:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 05:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新乡市| 大丰市| 上高县| 满洲里市| 会昌县| 虎林市| 石嘴山市| 沙洋县| 会理县| 临城县| 前郭尔| 叶城县| 金平| 运城市| 板桥市| 香港 | 伊金霍洛旗| 通山县| 霍山县| 昭觉县| 九寨沟县| 海宁市| 和平区| 临高县| 荆州市| 南昌县| 陕西省| 连城县| 尉犁县| 本溪市| 九龙县| 彰武县| 文成县| 林州市| 台东市| 大城县| 克东县| 九江市| 乌兰察布市| 台南市| 和林格尔县|