找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lifelong Machine Learning, Second Edition; Zhiyuan Chen,Bing Liu Book 2018Latest edition Springer Nature Switzerland AG 2018

[復制鏈接]
查看: 43163|回復: 47
樓主
發(fā)表于 2025-3-21 18:54:09 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Lifelong Machine Learning, Second Edition
編輯Zhiyuan Chen,Bing Liu
視頻videohttp://file.papertrans.cn/586/585945/585945.mp4
叢書名稱Synthesis Lectures on Artificial Intelligence and Machine Learning
圖書封面Titlebook: Lifelong Machine Learning, Second Edition;  Zhiyuan Chen,Bing Liu Book 2018Latest edition Springer Nature Switzerland AG 2018
描述.Lifelong Machine Learning, Second Edition. is an introduction to an advanced machine learning paradigm that continuously learns by accumulating past knowledge that it then uses in future learning and problem solving. In contrast, the current dominant machine learning paradigm learns in isolation: given a training dataset, it runs a machine learning algorithm on the dataset to produce a model that is then used in its intended application. It makes no attempt to retain the learned knowledge and use it in subsequent learning. Unlike this isolated system, humans learn effectively with only a few examples precisely because our learning is very knowledge-driven: the knowledge learned in the past helps us learn new things with little data or effort. Lifelong learning aims to emulate this capability, because without it, an AI system cannot be considered truly intelligent...Research in lifelong learning has developed significantly in the relatively short time since the first edition of this book was published. The purpose of this second edition is to expand the definition of lifelong learning, update the content of several chapters, and add a new chapter about continual learning in deep ne
出版日期Book 2018Latest edition
版次2
doihttps://doi.org/10.1007/978-3-031-01581-6
isbn_softcover978-3-031-00453-7
isbn_ebook978-3-031-01581-6Series ISSN 1939-4608 Series E-ISSN 1939-4616
issn_series 1939-4608
copyrightSpringer Nature Switzerland AG 2018
The information of publication is updating

書目名稱Lifelong Machine Learning, Second Edition影響因子(影響力)




書目名稱Lifelong Machine Learning, Second Edition影響因子(影響力)學科排名




書目名稱Lifelong Machine Learning, Second Edition網(wǎng)絡公開度




書目名稱Lifelong Machine Learning, Second Edition網(wǎng)絡公開度學科排名




書目名稱Lifelong Machine Learning, Second Edition被引頻次




書目名稱Lifelong Machine Learning, Second Edition被引頻次學科排名




書目名稱Lifelong Machine Learning, Second Edition年度引用




書目名稱Lifelong Machine Learning, Second Edition年度引用學科排名




書目名稱Lifelong Machine Learning, Second Edition讀者反饋




書目名稱Lifelong Machine Learning, Second Edition讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:19:11 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:51:16 | 只看該作者
地板
發(fā)表于 2025-3-22 05:56:46 | 只看該作者
Lifelong Information Extraction, extracted information earlier can be used to help extract more information later with higher quality [Carlson et al., 2010a, Liu et al., 2016, Shu et al., 2017b]. These all match the goal of LL. In this case, the knowledge base (KB) of LL often stores the extracted information and some other forms of useful knowledge.
5#
發(fā)表于 2025-3-22 10:07:37 | 只看該作者
Conclusion and Future Directions,d practitioners about the differences between these learning paradigms, which is not surprising as they are indeed similar and related. Hopefully, our new definition of LL in Section 1.4 and subsequent discussions in Chapter 2 help clarify the differences and resolve the confusions.
6#
發(fā)表于 2025-3-22 13:06:03 | 只看該作者
7#
發(fā)表于 2025-3-22 18:35:39 | 只看該作者
8#
發(fā)表于 2025-3-22 22:29:05 | 只看該作者
1939-4608 ting past knowledge that it then uses in future learning and problem solving. In contrast, the current dominant machine learning paradigm learns in isolation: given a training dataset, it runs a machine learning algorithm on the dataset to produce a model that is then used in its intended applicatio
9#
發(fā)表于 2025-3-23 03:54:30 | 只看該作者
10#
發(fā)表于 2025-3-23 09:27:10 | 只看該作者
Book 2018Latest editionknowledge that it then uses in future learning and problem solving. In contrast, the current dominant machine learning paradigm learns in isolation: given a training dataset, it runs a machine learning algorithm on the dataset to produce a model that is then used in its intended application. It make
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 10:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
常德市| 启东市| 会宁县| 滨州市| 太和县| 毕节市| 通渭县| 南城县| 安龙县| 托克逊县| 苏尼特右旗| 龙井市| 昌平区| 东辽县| 淮阳县| 井研县| 荥经县| 胶州市| 安泽县| 精河县| 美姑县| 滨州市| 秦皇岛市| 峡江县| 大安市| 夏河县| 南乐县| 安康市| 孝感市| 多伦县| 桓台县| 弥勒县| 河曲县| 上栗县| 嘉禾县| 泸州市| 水城县| 冀州市| 昆山市| 吉水县| 景德镇市|