找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lie Theory and Its Applications in Physics; Varna, Bulgaria, Jun Vladimir Dobrev Conference proceedings 2016 Springer Nature Singapore Pte

[復制鏈接]
樓主: 倒鉤
11#
發(fā)表于 2025-3-23 13:18:08 | 只看該作者
Special Conformal Transformations and Contact Termsormal field theory correlators. I show a few examples of covariant correlators in dimension 2 and 3 dimensions and in particular of those made of pure contact terms. I discuss in some detail the odd parity correlator in 3d and its connection with the gravitational Chern–Simons theory in 3d.
12#
發(fā)表于 2025-3-23 17:30:24 | 只看該作者
Sphere Partition Functions and the K?hler Metric on the Conformal Manifold a manifold, ., of Superconformal Field Theories. The space . is argued to be a K?hler manifold. We further argue that upon a stereographic projection of . to ., the partition function . measures the K?hler potential. These results are established by a careful study of the interplay between conformal anomalies and the space ..
13#
發(fā)表于 2025-3-23 21:20:02 | 只看該作者
Higher-Dimensional Unified Theories with Continuous and Fuzzy Coset Spaces as Extra Dimensionsgauge theory reduced over the nearly-K?hler manifold .. Then, we present the adjustment of the CSDR programme in the case that the extra dimensions are considered to be fuzzy coset spaces and then, the best model constructed in this framework, too, which is the trinification GUT, ..
14#
發(fā)表于 2025-3-24 02:05:35 | 只看該作者
Large Volume Supersymmetry Breaking Without Decompactification Problemngy Scherk-Schwarz mechanism. We review how the effective gauge couplings at 1-loop may evade the “decompactification problem”, namely the proportionality of the gauge threshold corrections, with the large volume of the compact space involved in the supersymmetry breaking.
15#
發(fā)表于 2025-3-24 04:34:14 | 只看該作者
16#
發(fā)表于 2025-3-24 09:42:29 | 只看該作者
17#
發(fā)表于 2025-3-24 13:55:41 | 只看該作者
18#
發(fā)表于 2025-3-24 15:40:54 | 只看該作者
Lie Theory and Its Applications in Physics978-981-10-2636-2Series ISSN 2194-1009 Series E-ISSN 2194-1017
19#
發(fā)表于 2025-3-24 19:03:45 | 只看該作者
20#
發(fā)表于 2025-3-25 01:56:42 | 只看該作者
Vladimir DobrevPresents a uniquely equal and balanced representation of mathematicians, mathematical physicists, and theoretical physicists.Serves as an interface of the scientific interests and methods of these gro
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 11:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
南宁市| 安岳县| 通江县| 长春市| 靖远县| 称多县| 罗山县| 江陵县| 河源市| 淮滨县| 郑州市| 太和县| 襄汾县| 铜山县| 肃南| 会宁县| 资中县| 从江县| 新乡市| 无锡市| 惠东县| 时尚| 永川市| 石城县| 千阳县| 景德镇市| 科技| 鄂尔多斯市| 攀枝花市| 颍上县| 遂溪县| 阳江市| 庆城县| 探索| 新平| 葫芦岛市| 台安县| 霍邱县| 武川县| 健康| 安徽省|