找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lie Theory and Its Applications in Physics; Varna, Bulgaria, Jun Vladimir Dobrev Conference proceedings 2014 Springer Japan 2014 (Super-)Gr

[復(fù)制鏈接]
31#
發(fā)表于 2025-3-26 21:18:46 | 只看該作者
Vector-Valued Covariant Differential Operators for the M?bius Transformatione particular differential operators of arbitrary order attached to Gegenbauer polynomials. These differential operators are symmetry breaking for the pair of Lie groups . that arise from conformal geometry.
32#
發(fā)表于 2025-3-27 01:10:45 | 只看該作者
33#
發(fā)表于 2025-3-27 07:05:23 | 只看該作者
The D-Brane Charges of ,,/,eory description of D-branes, i.e. the charge equation. Using this approach, we work out the charge groups for the non-simply connected group ., which requires knowing the NIM-rep of the underlying conformal field theory.
34#
發(fā)表于 2025-3-27 12:22:08 | 只看該作者
35#
發(fā)表于 2025-3-27 16:04:49 | 只看該作者
Revisiting Trace Anomalies in Chiral Theoriesossibility that such anomalies may contain not yet considered CP violating terms. The research consists of various stages. In the first stage we examine chiral theories at one-loop with external gravity and show that a (CP violating) Pontryagin term appears in the trace anomaly in the presence of an
36#
發(fā)表于 2025-3-27 19:56:47 | 只看該作者
Complete T-Dualization of a String in a Weakly Curved Backgroundsed of a constant metric and a linearly coordinate dependent Kalb-Ramond field with the infinitesimal strength. In this way we obtain the partially T-dualized?action. Applying the procedure to the rest of the original coordinates we obtain the totally T-dualized action. This derivation allows the in
37#
發(fā)表于 2025-3-28 01:52:49 | 只看該作者
Modular Double of the Quantum Group ,ual objects: .-deformation of the algebra . of functions on the Lie group and that for the universal enveloping algebra . of the corresponding Lie algebra. See?Faddeev [1] for the short history. It is instructive to stress, that the construction of .-deformation originates in the theory of the quant
38#
發(fā)表于 2025-3-28 02:37:41 | 只看該作者
39#
發(fā)表于 2025-3-28 08:26:33 | 只看該作者
40#
發(fā)表于 2025-3-28 12:03:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 22:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
碌曲县| 阿尔山市| 大渡口区| 仪征市| 大庆市| 赞皇县| 乌什县| 江孜县| 香格里拉县| 颍上县| 乐平市| 乌拉特前旗| 高平市| 武安市| 山东| 黔江区| 哈尔滨市| 棋牌| 鹰潭市| 福泉市| 社会| 古交市| 秀山| 金秀| 广水市| 南丰县| 温泉县| 南昌县| 军事| 榆树市| 渝中区| 仙桃市| 陇川县| 清苑县| 通辽市| 凌源市| 濉溪县| 库伦旗| 庆城县| 疏附县| 都江堰市|