找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lie Sphere Geometry; With Applications to Thomas E. Cecil Book 19921st edition Springer Science+Business Media New York 1992 Invariant.Lie.

[復制鏈接]
樓主: 浮標
11#
發(fā)表于 2025-3-23 11:58:00 | 只看該作者
Springer Science+Business Media New York 1992
12#
發(fā)表于 2025-3-23 13:51:59 | 只看該作者
Lie Sphere Geometry978-1-4757-4096-7Series ISSN 0172-5939 Series E-ISSN 2191-6675
13#
發(fā)表于 2025-3-23 19:31:11 | 只看該作者
14#
發(fā)表于 2025-3-23 22:43:15 | 只看該作者
https://doi.org/10.1007/978-1-4757-4096-7Invariant; Lie; Natural; character; classification; construction; curvature; form; framework; geometry; manifo
15#
發(fā)表于 2025-3-24 02:43:44 | 只看該作者
16#
發(fā)表于 2025-3-24 07:59:02 | 只看該作者
17#
發(fā)表于 2025-3-24 14:33:51 | 只看該作者
Book 19921st editionmanifolds. These have recently been classified up to Lie sphere transformation in certain special cases through the introduction of natural Lie invariants. The author provides complete proofs of these classifications and indicates directions for further research and wider application of these methods.
18#
發(fā)表于 2025-3-24 18:24:52 | 只看該作者
Book 19921st editiongins with Lie‘s construction of the space of spheres, including the fundamental notions of oriented contact, parabolic pencils of spheres and Lie sphere transformation. The link with Euclidean submanifold theory is established via the Legendre map. This provides a powerful framework for the study of
19#
發(fā)表于 2025-3-24 22:39:23 | 只看該作者
Introduction,come a valuable tool in the study of Dupin submanifolds in Euclidean space ?., beginning with Pinkall’s [1] dissertation in 1981. In this introduction, we will outline the contents of the book and mention some related results.
20#
發(fā)表于 2025-3-25 02:02:03 | 只看該作者
Dupin Submanifolds,rincipal curvatures in ?. in Section 4.6. To obtain these classifications, we develop the method of moving Lie frames which can be used in the further study of Dupin submanifolds, or more generally, Legendre submanifolds.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 08:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
宝兴县| 泸溪县| 右玉县| 兴国县| 鱼台县| 扎鲁特旗| 周宁县| 武邑县| 罗定市| 福建省| 广东省| 宣威市| 绥阳县| 英吉沙县| 长寿区| 静宁县| 景东| 沁水县| 阜新| 台中县| 延边| 宁远县| 封开县| 通许县| 林州市| 霍城县| 德令哈市| 浪卡子县| 佛山市| 平山县| 洛扎县| 金华市| 泸州市| 姜堰市| 昭觉县| 英德市| 庆阳市| 门源| 巴彦淖尔市| 灵山县| 屯门区|