找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lie Sphere Geometry; With Applications to Thomas E. Cecil Book 19921st edition Springer Science+Business Media New York 1992 Invariant.Lie.

[復制鏈接]
樓主: 浮標
11#
發(fā)表于 2025-3-23 11:58:00 | 只看該作者
Springer Science+Business Media New York 1992
12#
發(fā)表于 2025-3-23 13:51:59 | 只看該作者
Lie Sphere Geometry978-1-4757-4096-7Series ISSN 0172-5939 Series E-ISSN 2191-6675
13#
發(fā)表于 2025-3-23 19:31:11 | 只看該作者
14#
發(fā)表于 2025-3-23 22:43:15 | 只看該作者
https://doi.org/10.1007/978-1-4757-4096-7Invariant; Lie; Natural; character; classification; construction; curvature; form; framework; geometry; manifo
15#
發(fā)表于 2025-3-24 02:43:44 | 只看該作者
16#
發(fā)表于 2025-3-24 07:59:02 | 只看該作者
17#
發(fā)表于 2025-3-24 14:33:51 | 只看該作者
Book 19921st editionmanifolds. These have recently been classified up to Lie sphere transformation in certain special cases through the introduction of natural Lie invariants. The author provides complete proofs of these classifications and indicates directions for further research and wider application of these methods.
18#
發(fā)表于 2025-3-24 18:24:52 | 只看該作者
Book 19921st editiongins with Lie‘s construction of the space of spheres, including the fundamental notions of oriented contact, parabolic pencils of spheres and Lie sphere transformation. The link with Euclidean submanifold theory is established via the Legendre map. This provides a powerful framework for the study of
19#
發(fā)表于 2025-3-24 22:39:23 | 只看該作者
Introduction,come a valuable tool in the study of Dupin submanifolds in Euclidean space ?., beginning with Pinkall’s [1] dissertation in 1981. In this introduction, we will outline the contents of the book and mention some related results.
20#
發(fā)表于 2025-3-25 02:02:03 | 只看該作者
Dupin Submanifolds,rincipal curvatures in ?. in Section 4.6. To obtain these classifications, we develop the method of moving Lie frames which can be used in the further study of Dupin submanifolds, or more generally, Legendre submanifolds.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 06:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
石阡县| 瓮安县| 建宁县| 临沧市| 沂源县| 饶河县| 黎平县| 阿拉善左旗| 来宾市| 江源县| 册亨县| 平阳县| 五家渠市| 安义县| 余庆县| 棋牌| 江阴市| 岱山县| 肇东市| 永兴县| 乌什县| 桐梓县| 焉耆| 天峨县| 衢州市| 金寨县| 大石桥市| 丰都县| 泽库县| 东丽区| 璧山县| 太康县| 盘锦市| 许昌县| 侯马市| 寻乌县| 桐城市| 太和县| 台东市| 浮山县| 贺兰县|