找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lie Methods in Deformation Theory; Marco Manetti Book 2022 The Editor(s) (if applicable) and The Author(s), under exclusive license to Spr

[復(fù)制鏈接]
樓主: FETID
21#
發(fā)表于 2025-3-25 04:55:10 | 只看該作者
-Algebras,rmation functors to them. It is easy to give the definition of .-algebras; it is sufficient to modify the notion of a differential graded Lie algebra by imposing that the Jacobi identity holds only up to a hierarchy of higher homotopies.
22#
發(fā)表于 2025-3-25 11:09:26 | 只看該作者
Coalgebras and Coderivations,understand. One of the goals of this chapter is to reinterpret both the Nijenhuis–Richardson bracket and the category of formal neighbourhoods in the framework of graded coalgebras. This will allow us to give, in Chap.?12, a useful equivalent characterization of . structures which leads naturally to
23#
發(fā)表于 2025-3-25 15:20:07 | 只看該作者
24#
發(fā)表于 2025-3-25 17:53:01 | 只看該作者
Formal Kuranishi Families and Period Maps,theory. The first two sections of this chapter are devoted to the proof that every .-morphism induces natural transformations of both Maurer–Cartan and deformation functors, together with an interpretation of the formal Kuranishi family in terms of homotopy transfer of . structure.
25#
發(fā)表于 2025-3-25 23:13:30 | 只看該作者
Tree Summation Formulas,In this chapter we consider the cases where the combinatorial data involved are rooted trees (Definition?14.1.2) possibly equipped with additional data (orientation, labelling etc.). In particular, we shall provide tree summation formulas for the BCH product (recursive formula of Definition 2.5.1) a
26#
發(fā)表于 2025-3-26 01:17:04 | 只看該作者
https://doi.org/10.1007/978-981-19-1185-9deformation theory; differential graded Lie algebras; L-infinity algebras; simplicial methods; Deligne g
27#
發(fā)表于 2025-3-26 07:39:12 | 只看該作者
Lie Algebras,In this chapter, after a brief review of Lie algebras and descending central series, we study free Lie algebras over fields of characteristic 0 and the Baker–Campbell–Hausdorff (BCH) product.
28#
發(fā)表于 2025-3-26 12:02:52 | 只看該作者
,Deformations of?Complex Manifolds and?Holomorphic Maps,In this chapter we work over the field of complex numbers . and we study deformations of complex manifolds and holomorphic maps from the point of view of DG-Lie algebras.
29#
發(fā)表于 2025-3-26 15:13:35 | 只看該作者
,Poisson, Gerstenhaber and?Batalin–Vilkovisky Algebras,In several interesting deformation problems the controlling differential graded Lie algebra admits an enhanced algebraic structure, and this is usually useful in the study of its homotopy type and of its associated deformation functor.
30#
發(fā)表于 2025-3-26 17:06:14 | 只看該作者
978-981-19-1187-3The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 13:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宾阳县| 阳高县| 蕉岭县| 甘谷县| 安达市| 隆尧县| 四子王旗| 丁青县| 南开区| 仁怀市| 巩留县| 泰兴市| 寿宁县| 铅山县| 林周县| 雅安市| 博乐市| 祥云县| 会东县| 崇左市| 曲沃县| 白沙| 镇安县| 获嘉县| 方正县| 乌鲁木齐市| 河东区| 双柏县| 北票市| 盐池县| 桂林市| 大同县| 荔浦县| 东乌珠穆沁旗| 东台市| 保山市| 阜新市| 漳平市| 广汉市| 万源市| 白银市|