找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lie Methods in Deformation Theory; Marco Manetti Book 2022 The Editor(s) (if applicable) and The Author(s), under exclusive license to Spr

[復制鏈接]
樓主: FETID
21#
發(fā)表于 2025-3-25 04:55:10 | 只看該作者
-Algebras,rmation functors to them. It is easy to give the definition of .-algebras; it is sufficient to modify the notion of a differential graded Lie algebra by imposing that the Jacobi identity holds only up to a hierarchy of higher homotopies.
22#
發(fā)表于 2025-3-25 11:09:26 | 只看該作者
Coalgebras and Coderivations,understand. One of the goals of this chapter is to reinterpret both the Nijenhuis–Richardson bracket and the category of formal neighbourhoods in the framework of graded coalgebras. This will allow us to give, in Chap.?12, a useful equivalent characterization of . structures which leads naturally to
23#
發(fā)表于 2025-3-25 15:20:07 | 只看該作者
24#
發(fā)表于 2025-3-25 17:53:01 | 只看該作者
Formal Kuranishi Families and Period Maps,theory. The first two sections of this chapter are devoted to the proof that every .-morphism induces natural transformations of both Maurer–Cartan and deformation functors, together with an interpretation of the formal Kuranishi family in terms of homotopy transfer of . structure.
25#
發(fā)表于 2025-3-25 23:13:30 | 只看該作者
Tree Summation Formulas,In this chapter we consider the cases where the combinatorial data involved are rooted trees (Definition?14.1.2) possibly equipped with additional data (orientation, labelling etc.). In particular, we shall provide tree summation formulas for the BCH product (recursive formula of Definition 2.5.1) a
26#
發(fā)表于 2025-3-26 01:17:04 | 只看該作者
https://doi.org/10.1007/978-981-19-1185-9deformation theory; differential graded Lie algebras; L-infinity algebras; simplicial methods; Deligne g
27#
發(fā)表于 2025-3-26 07:39:12 | 只看該作者
Lie Algebras,In this chapter, after a brief review of Lie algebras and descending central series, we study free Lie algebras over fields of characteristic 0 and the Baker–Campbell–Hausdorff (BCH) product.
28#
發(fā)表于 2025-3-26 12:02:52 | 只看該作者
,Deformations of?Complex Manifolds and?Holomorphic Maps,In this chapter we work over the field of complex numbers . and we study deformations of complex manifolds and holomorphic maps from the point of view of DG-Lie algebras.
29#
發(fā)表于 2025-3-26 15:13:35 | 只看該作者
,Poisson, Gerstenhaber and?Batalin–Vilkovisky Algebras,In several interesting deformation problems the controlling differential graded Lie algebra admits an enhanced algebraic structure, and this is usually useful in the study of its homotopy type and of its associated deformation functor.
30#
發(fā)表于 2025-3-26 17:06:14 | 只看該作者
978-981-19-1187-3The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 17:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
大连市| 兴和县| 大兴区| 德安县| 涞源县| 平和县| 璧山县| 托克托县| 肇庆市| 廉江市| 弥勒县| 聂拉木县| 河间市| 隆德县| 连城县| 兰西县| 保亭| 堆龙德庆县| 甘孜| 益阳市| 鄂伦春自治旗| 木兰县| 油尖旺区| 庆城县| 德格县| 盖州市| 阆中市| 凤城市| 邵阳市| 疏附县| 明水县| 临朐县| 弥勒县| 鹿泉市| 茌平县| 四会市| 梁山县| 电白县| 双牌县| 深圳市| 武穴市|