找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lie Groups: Structure, Actions, and Representations; In Honor of Joseph A Alan Huckleberry,Ivan Penkov,Gregg Zuckerman Book 2013 Springer S

[復(fù)制鏈接]
查看: 18524|回復(fù): 60
樓主
發(fā)表于 2025-3-21 19:41:32 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Lie Groups: Structure, Actions, and Representations
副標(biāo)題In Honor of Joseph A
編輯Alan Huckleberry,Ivan Penkov,Gregg Zuckerman
視頻videohttp://file.papertrans.cn/586/585708/585708.mp4
概述Invited contributions are written by distinguished researchers in the field.Most articles are surveys of important research areas involving algebraic, geometric, and analytic methods.Finite groups and
叢書名稱Progress in Mathematics
圖書封面Titlebook: Lie Groups: Structure, Actions, and Representations; In Honor of Joseph A Alan Huckleberry,Ivan Penkov,Gregg Zuckerman Book 2013 Springer S
描述.Lie Groups: Structures, Actions, and Representations, In Honor of Joseph A. Wolf on the Occasion of his 75th Birthday. consists of invited expository and research articles on new developments arising from Wolf‘s profound contributions to mathematics. Due to Professor Wolf’s broad interests, outstanding mathematicians and scholars in a wide spectrum of mathematical fields contributed to the volume.? Algebraic, geometric, and analytic methods are employed. More precisely, finite groups and classical finite dimensional, as well as infinite-dimensional Lie groups, and algebras play a role. Actions on classical symmetric spaces, and on abstract homogeneous and representation spaces are discussed. Contributions in the area of representation theory involve numerous viewpoints, including that of algebraic groups and various analytic aspects of harmonic analysis..?.Contributors.?.D. Akhiezer ??????????????????????? T. Oshima.A. Andrada ??????????????????????? I. Pacharoni.M. L. Barberis??????????????????? F. Ricci.L. Barchini ?????????????????????????? S. Rosenberg.I. Dotti ???????????????????????????????? N. Shimeno.M. Eastwood???????????????????? J.Tirao.V. Fischer ??????????????????????
出版日期Book 2013
關(guān)鍵詞Hilbert‘s problems; Lie theory; Lorentz Group; Representation theory; differentiable manifold
版次1
doihttps://doi.org/10.1007/978-1-4614-7193-6
isbn_softcover978-1-4899-9057-0
isbn_ebook978-1-4614-7193-6Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightSpringer Science+Business Media New York 2013
The information of publication is updating

書目名稱Lie Groups: Structure, Actions, and Representations影響因子(影響力)




書目名稱Lie Groups: Structure, Actions, and Representations影響因子(影響力)學(xué)科排名




書目名稱Lie Groups: Structure, Actions, and Representations網(wǎng)絡(luò)公開度




書目名稱Lie Groups: Structure, Actions, and Representations網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Lie Groups: Structure, Actions, and Representations被引頻次




書目名稱Lie Groups: Structure, Actions, and Representations被引頻次學(xué)科排名




書目名稱Lie Groups: Structure, Actions, and Representations年度引用




書目名稱Lie Groups: Structure, Actions, and Representations年度引用學(xué)科排名




書目名稱Lie Groups: Structure, Actions, and Representations讀者反饋




書目名稱Lie Groups: Structure, Actions, and Representations讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:11:03 | 只看該作者
,Center ,, Cascade of Orthogonal Roots, and a Construction of Lipsman–Wolf, certain elements in .. A key lemma in [LW] is incorrect but the idea is in fact valid. In our paper here we modify the construction so as to yield these elements in . and use the [LW] result to prove a theorem of Tony Joseph.
板凳
發(fā)表于 2025-3-22 03:41:56 | 只看該作者
,Holomorphic Realization of Unitary Representations of Banach–Lie Groups,ally induced and apply these to the class of so-called positive energy representations. All this is based on extensions of Arveson’s concept of spectral subspaces to representations on Fréchet spaces, in particular on spaces of smooth vectors.
地板
發(fā)表于 2025-3-22 08:15:55 | 只看該作者
Book 2013 and research articles on new developments arising from Wolf‘s profound contributions to mathematics. Due to Professor Wolf’s broad interests, outstanding mathematicians and scholars in a wide spectrum of mathematical fields contributed to the volume.? Algebraic, geometric, and analytic methods are
5#
發(fā)表于 2025-3-22 12:29:11 | 只看該作者
Propagation of Multiplicity-Freeness Property for Holomorphic Vector Bundles,te- and infinite-dimensional cases in a systematic and synthetic manner. The key geometric condition in our theorem is an orbit-preserving anti-holomorphic diffeomorphism on the base space, which brings us to the concept of visible actions on complex manifolds.
6#
發(fā)表于 2025-3-22 14:42:03 | 只看該作者
Analysis on Flag Manifolds and Sobolev Inequalities,In particular the Sobolev inequalities obtained involve hypoelliptic differential operators as opposed to elliptic ones in the usual case. One may hope that these ideas might in some form be extended to other parabolic geometries as well.
7#
發(fā)表于 2025-3-22 18:17:15 | 只看該作者
8#
發(fā)表于 2025-3-22 22:48:36 | 只看該作者
Lie Groups: Structure, Actions, and Representations978-1-4614-7193-6Series ISSN 0743-1643 Series E-ISSN 2296-505X
9#
發(fā)表于 2025-3-23 01:40:38 | 只看該作者
Alan Huckleberry,Ivan Penkov,Gregg ZuckermanInvited contributions are written by distinguished researchers in the field.Most articles are surveys of important research areas involving algebraic, geometric, and analytic methods.Finite groups and
10#
發(fā)表于 2025-3-23 09:12:28 | 只看該作者
Progress in Mathematicshttp://image.papertrans.cn/l/image/585708.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 22:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
垣曲县| 沙湾县| 雷州市| 抚顺市| 临西县| 宝山区| 灵丘县| 九台市| 延寿县| 柳河县| 永吉县| 宜兰县| 锦屏县| 阜宁县| 大城县| 隆子县| 汉川市| 宿松县| 全州县| 东丰县| 井研县| 防城港市| 盖州市| 商城县| 延庆县| 体育| 永善县| 房产| 五家渠市| 广安市| 沈阳市| 莫力| 海南省| 龙门县| 安泽县| 崇义县| 阳泉市| 舒兰市| 灯塔市| 微山县| 平阳县|