找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lie Groups and Algebras with Applications to Physics, Geometry, and Mechanics; D. H. Sattinger,O. L. Weaver Book 1986 Springer-Verlag Berl

[復(fù)制鏈接]
查看: 33900|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:01:09 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Lie Groups and Algebras with Applications to Physics, Geometry, and Mechanics
編輯D. H. Sattinger,O. L. Weaver
視頻videohttp://file.papertrans.cn/586/585698/585698.mp4
叢書名稱Applied Mathematical Sciences
圖書封面Titlebook: Lie Groups and Algebras with Applications to Physics, Geometry, and Mechanics;  D. H. Sattinger,O. L. Weaver Book 1986 Springer-Verlag Berl
描述This book is intended as an introductory text on the subject of Lie groups and algebras and their role in various fields of mathematics and physics. It is written by and for researchers who are primarily analysts or physicists, not algebraists or geometers. Not that we have eschewed the algebraic and geo- metric developments. But we wanted to present them in a concrete way and to show how the subject interacted with physics, geometry, and mechanics. These interactions are, of course, manifold; we have discussed many of them here-in particular, Riemannian geometry, elementary particle physics, sym- metries of differential equations, completely integrable Hamiltonian systems, and spontaneous symmetry breaking. Much ofthe material we have treated is standard and widely available; but we have tried to steer a course between the descriptive approach such as found in Gilmore and Wybourne, and the abstract mathematical approach of Helgason or Jacobson. Gilmore and Wybourne address themselvesto the physics community whereas Helgason and Jacobson address themselves to the mathematical community. This book is an attempt to synthesize the two points of view and address both audiences simultan
出版日期Book 1986
關(guān)鍵詞Algebra; Algebras; Applications; Geometry; Groups; Mechanics; Physics; Representation theory; Symmetry group
版次1
doihttps://doi.org/10.1007/978-1-4757-1910-9
isbn_softcover978-1-4419-3077-4
isbn_ebook978-1-4757-1910-9Series ISSN 0066-5452 Series E-ISSN 2196-968X
issn_series 0066-5452
copyrightSpringer-Verlag Berlin Heidelberg 1986
The information of publication is updating

書目名稱Lie Groups and Algebras with Applications to Physics, Geometry, and Mechanics影響因子(影響力)




書目名稱Lie Groups and Algebras with Applications to Physics, Geometry, and Mechanics影響因子(影響力)學(xué)科排名




書目名稱Lie Groups and Algebras with Applications to Physics, Geometry, and Mechanics網(wǎng)絡(luò)公開度




書目名稱Lie Groups and Algebras with Applications to Physics, Geometry, and Mechanics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Lie Groups and Algebras with Applications to Physics, Geometry, and Mechanics被引頻次




書目名稱Lie Groups and Algebras with Applications to Physics, Geometry, and Mechanics被引頻次學(xué)科排名




書目名稱Lie Groups and Algebras with Applications to Physics, Geometry, and Mechanics年度引用




書目名稱Lie Groups and Algebras with Applications to Physics, Geometry, and Mechanics年度引用學(xué)科排名




書目名稱Lie Groups and Algebras with Applications to Physics, Geometry, and Mechanics讀者反饋




書目名稱Lie Groups and Algebras with Applications to Physics, Geometry, and Mechanics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:20:59 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:06:46 | 只看該作者
地板
發(fā)表于 2025-3-22 07:42:57 | 只看該作者
5#
發(fā)表于 2025-3-22 09:32:29 | 只看該作者
6#
發(fā)表于 2025-3-22 14:36:47 | 只看該作者
extualized illustrations on how to address inequities and combat social, political and economic injustices through the processes of education in societies and educational institutions around the world.978-94-024-0725-9978-94-007-6555-9Series ISSN 2197-1951 Series E-ISSN 2197-196X
7#
發(fā)表于 2025-3-22 19:32:05 | 只看該作者
8#
發(fā)表于 2025-3-22 22:12:55 | 只看該作者
9#
發(fā)表于 2025-3-23 03:00:32 | 只看該作者
10#
發(fā)表于 2025-3-23 05:58:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 01:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
唐山市| 乐都县| 定襄县| 保靖县| 重庆市| 丹阳市| 五寨县| 福建省| 防城港市| 九江县| 仪陇县| 安吉县| 河南省| 克拉玛依市| 黄梅县| 内江市| 绥江县| 耒阳市| 介休市| 香格里拉县| 古交市| 额敏县| 邵阳县| 神池县| 黄冈市| 米林县| 奉新县| 德清县| 临颍县| 微博| 南安市| 庄浪县| 静安区| 梓潼县| 怀安县| 江门市| 措美县| 宝兴县| 遂溪县| 冷水江市| 余庆县|