找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lie Groups and Algebraic Groups; Arkadij L. Onishchik,Ernest B. Vinberg Book 1990 Springer-Verlag Berlin Heidelberg 1990 Darstellungstheor

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 05:59:42 | 只看該作者
22#
發(fā)表于 2025-3-25 10:58:21 | 只看該作者
23#
發(fā)表于 2025-3-25 15:28:30 | 只看該作者
24#
發(fā)表于 2025-3-25 17:00:08 | 只看該作者
Levi Decomposition,v. Levi’s theorem implies the result which concludes the classical Lie group theory—the existence of a Lie group with an arbitrary given tangent algebra. Next we will consider an analogue of Levi decomposition for algebraic groups.
25#
發(fā)表于 2025-3-25 22:40:41 | 只看該作者
Book 1990ersity in 1967/68. Our guiding idea was to present in the most economic way the theory of semisimple Lie groups on the basis of the theory of algebraic groups. Our main sources were A. Borel‘s paper [34], C. ChevalIey‘s seminar [14], seminar "Sophus Lie" [15] and monographs by C. Chevalley [4], N. J
26#
發(fā)表于 2025-3-26 03:24:34 | 只看該作者
Algebraic Groups,raic group is an affine algebraic group. Besides, the general linear groups and any of their algebraic subgroups are affine algebraic groups. Therefore the affine algebraic groups are the most interesting ones for the Lie group theory. We will simply call them algebraic groups.
27#
發(fā)表于 2025-3-26 07:01:17 | 只看該作者
Real Semisimple Lie Groups,phisms of . up to conjugacy in Aut .. This classification is easily obtained from the results of 4.4. The global classification of real semisimple Lie groups makes use of the so-called Cartan decomposition of these groups which also plays an important role in various applications of the Lie group theory.
28#
發(fā)表于 2025-3-26 10:57:32 | 只看該作者
29#
發(fā)表于 2025-3-26 15:25:05 | 只看該作者
30#
發(fā)表于 2025-3-26 19:06:44 | 只看該作者
Arkadij L. Onishchik,Ernest B. Vinbergc decisions were made by other firms, they should not be regarded as independent firms, and analysing their management structures separately makes no sense. Was it the individual large-scale companies, the . or other sorts of institutions external to the individual firm that were responsible for top
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 12:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
改则县| 白河县| 斗六市| 内丘县| 尼玛县| 红安县| 井冈山市| 时尚| 古丈县| 清镇市| 抚宁县| 田东县| 伊金霍洛旗| 岳普湖县| 华蓥市| 克山县| 遵义市| 阿克陶县| 红桥区| 息烽县| 罗平县| 资兴市| 淳化县| 桓仁| 侯马市| 邯郸市| 元江| 舟曲县| 新源县| 拜城县| 九龙坡区| 江口县| 寻乌县| 桂平市| 遂川县| 台湾省| 广德县| 探索| 宁蒗| 新安县| 吕梁市|