找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lie Groups Beyond an Introduction; Anthony W. Knapp Book 19961st edition Birkh?user Boston 1996 Algebra/Rings.Group representation.Group t

[復(fù)制鏈接]
查看: 12370|回復(fù): 42
樓主
發(fā)表于 2025-3-21 18:24:48 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Lie Groups Beyond an Introduction
編輯Anthony W. Knapp
視頻videohttp://file.papertrans.cn/586/585696/585696.mp4
叢書名稱Progress in Mathematics
圖書封面Titlebook: Lie Groups Beyond an Introduction;  Anthony W. Knapp Book 19961st edition Birkh?user Boston 1996 Algebra/Rings.Group representation.Group t
描述Fifty years ago Claude Chevalley revolutionized Lie theory by pub- lishing his classic Theory of Lie Groups I. Before his book Lie theory was a mixture of local and global results. As Chevalley put it, "This limitation was probably necessary as long as general topology was not yet sufficiently well elaborated to provide a solid base for a theory in the large. These days are now passed:‘ Indeed, they are passed because Chevalley‘s book changed matters. Chevalley made global Lie groups into the primary objects of study. In his third and fourth chapters he introduced the global notion of ana- lytic subgroup, so that Lie subalgebras corresponded exactly to analytic subgroups. This correspondence is now taken as absolutely standard, and any introduction to general Lie groups has to have it at its core. Nowadays "local Lie groups" are a thing of the past; they arise only at one point in the development, and only until Chevalley‘s results have been stated and have eliminated the need for the local theory. But where does the theory go from this point? Fifty years after Cheval- ley‘s book, there are clear topics: E. Cartan‘s completion ofW. Killing‘s work on classifying complex semisimple L
出版日期Book 19961st edition
關(guān)鍵詞Algebra/Rings; Group representation; Group theory; Groups & Generalizations; Lie Groups; Math Physics; Mat
版次1
doihttps://doi.org/10.1007/978-1-4757-2453-0
isbn_ebook978-1-4757-2453-0Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightBirkh?user Boston 1996
The information of publication is updating

書目名稱Lie Groups Beyond an Introduction影響因子(影響力)




書目名稱Lie Groups Beyond an Introduction影響因子(影響力)學(xué)科排名




書目名稱Lie Groups Beyond an Introduction網(wǎng)絡(luò)公開度




書目名稱Lie Groups Beyond an Introduction網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Lie Groups Beyond an Introduction被引頻次




書目名稱Lie Groups Beyond an Introduction被引頻次學(xué)科排名




書目名稱Lie Groups Beyond an Introduction年度引用




書目名稱Lie Groups Beyond an Introduction年度引用學(xué)科排名




書目名稱Lie Groups Beyond an Introduction讀者反饋




書目名稱Lie Groups Beyond an Introduction讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:16:52 | 只看該作者
0743-1643 s a mixture of local and global results. As Chevalley put it, "This limitation was probably necessary as long as general topology was not yet sufficiently well elaborated to provide a solid base for a theory in the large. These days are now passed:‘ Indeed, they are passed because Chevalley‘s book c
板凳
發(fā)表于 2025-3-22 02:26:29 | 只看該作者
地板
發(fā)表于 2025-3-22 05:20:30 | 只看該作者
Progress in Mathematicshttp://image.papertrans.cn/l/image/585696.jpg
5#
發(fā)表于 2025-3-22 11:16:59 | 只看該作者
6#
發(fā)表于 2025-3-22 16:58:21 | 只看該作者
7#
發(fā)表于 2025-3-22 17:54:09 | 只看該作者
8#
發(fā)表于 2025-3-22 23:37:24 | 只看該作者
9#
發(fā)表于 2025-3-23 04:25:17 | 只看該作者
10#
發(fā)表于 2025-3-23 07:52:31 | 只看該作者
Anthony W. Knapp rethink the manner in which they do business and develop a new model that can respond to the dynamic global business environment while maintaining traditional strengths such as organizational commitment, loyalty and emphasis on quality. The key to recovery will be this balance of change and continu
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 01:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
铜鼓县| 滁州市| 新干县| 射阳县| 澳门| 兴海县| 灵璧县| 池州市| 搜索| 冕宁县| 中卫市| 湖北省| 太保市| 资溪县| 油尖旺区| 禹州市| 柳河县| 古丈县| 承德县| 吉安市| 阳东县| 寻甸| 类乌齐县| 康乐县| 平顺县| 荆州市| 民勤县| 远安县| 凤山县| 佛坪县| 扶余县| 泸溪县| 盐边县| 虹口区| 平顶山市| 汉源县| 清水县| 林周县| 西吉县| 吉隆县| 敦煌市|