找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lie Groups Beyond an Introduction; Anthony W. Knapp Book 19961st edition Birkh?user Boston 1996 Algebra/Rings.Group representation.Group t

[復(fù)制鏈接]
查看: 12370|回復(fù): 42
樓主
發(fā)表于 2025-3-21 18:24:48 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Lie Groups Beyond an Introduction
編輯Anthony W. Knapp
視頻videohttp://file.papertrans.cn/586/585696/585696.mp4
叢書名稱Progress in Mathematics
圖書封面Titlebook: Lie Groups Beyond an Introduction;  Anthony W. Knapp Book 19961st edition Birkh?user Boston 1996 Algebra/Rings.Group representation.Group t
描述Fifty years ago Claude Chevalley revolutionized Lie theory by pub- lishing his classic Theory of Lie Groups I. Before his book Lie theory was a mixture of local and global results. As Chevalley put it, "This limitation was probably necessary as long as general topology was not yet sufficiently well elaborated to provide a solid base for a theory in the large. These days are now passed:‘ Indeed, they are passed because Chevalley‘s book changed matters. Chevalley made global Lie groups into the primary objects of study. In his third and fourth chapters he introduced the global notion of ana- lytic subgroup, so that Lie subalgebras corresponded exactly to analytic subgroups. This correspondence is now taken as absolutely standard, and any introduction to general Lie groups has to have it at its core. Nowadays "local Lie groups" are a thing of the past; they arise only at one point in the development, and only until Chevalley‘s results have been stated and have eliminated the need for the local theory. But where does the theory go from this point? Fifty years after Cheval- ley‘s book, there are clear topics: E. Cartan‘s completion ofW. Killing‘s work on classifying complex semisimple L
出版日期Book 19961st edition
關(guān)鍵詞Algebra/Rings; Group representation; Group theory; Groups & Generalizations; Lie Groups; Math Physics; Mat
版次1
doihttps://doi.org/10.1007/978-1-4757-2453-0
isbn_ebook978-1-4757-2453-0Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightBirkh?user Boston 1996
The information of publication is updating

書目名稱Lie Groups Beyond an Introduction影響因子(影響力)




書目名稱Lie Groups Beyond an Introduction影響因子(影響力)學(xué)科排名




書目名稱Lie Groups Beyond an Introduction網(wǎng)絡(luò)公開度




書目名稱Lie Groups Beyond an Introduction網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Lie Groups Beyond an Introduction被引頻次




書目名稱Lie Groups Beyond an Introduction被引頻次學(xué)科排名




書目名稱Lie Groups Beyond an Introduction年度引用




書目名稱Lie Groups Beyond an Introduction年度引用學(xué)科排名




書目名稱Lie Groups Beyond an Introduction讀者反饋




書目名稱Lie Groups Beyond an Introduction讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:16:52 | 只看該作者
0743-1643 s a mixture of local and global results. As Chevalley put it, "This limitation was probably necessary as long as general topology was not yet sufficiently well elaborated to provide a solid base for a theory in the large. These days are now passed:‘ Indeed, they are passed because Chevalley‘s book c
板凳
發(fā)表于 2025-3-22 02:26:29 | 只看該作者
地板
發(fā)表于 2025-3-22 05:20:30 | 只看該作者
Progress in Mathematicshttp://image.papertrans.cn/l/image/585696.jpg
5#
發(fā)表于 2025-3-22 11:16:59 | 只看該作者
6#
發(fā)表于 2025-3-22 16:58:21 | 只看該作者
7#
發(fā)表于 2025-3-22 17:54:09 | 只看該作者
8#
發(fā)表于 2025-3-22 23:37:24 | 只看該作者
9#
發(fā)表于 2025-3-23 04:25:17 | 只看該作者
10#
發(fā)表于 2025-3-23 07:52:31 | 只看該作者
Anthony W. Knapp rethink the manner in which they do business and develop a new model that can respond to the dynamic global business environment while maintaining traditional strengths such as organizational commitment, loyalty and emphasis on quality. The key to recovery will be this balance of change and continu
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 01:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
和林格尔县| 雅安市| 无极县| 岑溪市| 海兴县| 贵阳市| 五莲县| 温宿县| 桦甸市| 兴义市| 大宁县| 洛宁县| 屯门区| 巩留县| 冷水江市| 荆州市| 视频| 广德县| 吉安市| 乐山市| 渝中区| 滨海县| 平阴县| 襄汾县| 明水县| 仁布县| 冷水江市| 邵东县| 惠安县| 贵德县| 阿克陶县| 乌鲁木齐县| 安达市| 靖西县| 怀安县| 襄樊市| 河西区| 湖口县| 正镶白旗| 图片| 礼泉县|