找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lie Group Actions in Complex Analysis; Dmitri N. Akhiezer Book 1995 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden

[復制鏈接]
查看: 38337|回復: 39
樓主
發(fā)表于 2025-3-21 18:23:32 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Lie Group Actions in Complex Analysis
編輯Dmitri N. Akhiezer
視頻videohttp://file.papertrans.cn/586/585687/585687.mp4
叢書名稱Aspects of Mathematics
圖書封面Titlebook: Lie Group Actions in Complex Analysis;  Dmitri N. Akhiezer Book 1995 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden
描述This book was planned as an introduction to a vast area, where many contri- butions have been made in recent years. The choice of material is based on my understanding of the role of Lie groups in complex analysis. On the one hand, they appear as the automorphism groups of certain complex spaces, e. g. , bounded domains in en or compact spaces, and are therefore important as being one of their invariants. On the other hand, complex Lie groups and, more generally, homoge- neous complex manifolds, serve as a proving ground, where it is often possible to accomplish a task and get an explicit answer. One good example of this kind is the theory of homogeneous vector bundles over flag manifolds. Another example is the way the global analytic properties of homogeneous manifolds are translated into algebraic language. It is my pleasant duty to thank A. L. Onishchik, who first introduced me to the theory of Lie groups more than 25 years ago. I am greatly indebted to him and to E. B. Vinberg forthe help and advice they have given me for years. I would like to express my gratitude to M. Brion, B. GilIigan, P. Heinzner, A. Hu- kleberry, and E. Oeljeklaus for valuable discussions of various sub
出版日期Book 1995
關鍵詞Algebra; Automorphism groups; Compact homogeneous manifolds; Complex analysis; Function theory on homoge
版次1
doihttps://doi.org/10.1007/978-3-322-80267-5
isbn_softcover978-3-322-80269-9
isbn_ebook978-3-322-80267-5Series ISSN 0179-2156
issn_series 0179-2156
copyrightFriedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden 1995
The information of publication is updating

書目名稱Lie Group Actions in Complex Analysis影響因子(影響力)




書目名稱Lie Group Actions in Complex Analysis影響因子(影響力)學科排名




書目名稱Lie Group Actions in Complex Analysis網(wǎng)絡公開度




書目名稱Lie Group Actions in Complex Analysis網(wǎng)絡公開度學科排名




書目名稱Lie Group Actions in Complex Analysis被引頻次




書目名稱Lie Group Actions in Complex Analysis被引頻次學科排名




書目名稱Lie Group Actions in Complex Analysis年度引用




書目名稱Lie Group Actions in Complex Analysis年度引用學科排名




書目名稱Lie Group Actions in Complex Analysis讀者反饋




書目名稱Lie Group Actions in Complex Analysis讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:54:18 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:06:16 | 只看該作者
地板
發(fā)表于 2025-3-22 04:38:19 | 只看該作者
Compact Homogeneous Manifolds, projective homogeneous manifolds, which are rational and/or simply connected. We also discuss their automorphism groups, though the proof of one important theorem stated here will be given later in Chapter 4.
5#
發(fā)表于 2025-3-22 10:42:57 | 只看該作者
Aspects of Mathematicshttp://image.papertrans.cn/l/image/585687.jpg
6#
發(fā)表于 2025-3-22 15:51:28 | 只看該作者
7#
發(fā)表于 2025-3-22 18:16:31 | 只看該作者
978-3-322-80269-9Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden 1995
8#
發(fā)表于 2025-3-22 22:06:26 | 只看該作者
Lie Group Actions in Complex Analysis978-3-322-80267-5Series ISSN 0179-2156
9#
發(fā)表于 2025-3-23 01:31:21 | 只看該作者
Introduction,The aim of this book is the study of Lie group actions on complex spaces. For the same reason as in the general Lie theory, it is natural to begin with the local properties of such actions, and so one is led to the foundations and, in particular, to Hilbert’s fifth problem.
10#
發(fā)表于 2025-3-23 07:11:09 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 16:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
北碚区| 墨玉县| 普安县| 嘉禾县| 佛山市| 徐汇区| 兰考县| 嘉峪关市| 庄河市| 左权县| 延长县| 陈巴尔虎旗| 伊春市| 万山特区| 汉阴县| 柞水县| 彭州市| 浙江省| 长春市| 台中县| 奉节县| 民权县| 永州市| 辽源市| 河池市| 肇州县| 广汉市| 岫岩| 连江县| 米泉市| 上饶县| 彭水| 分宜县| 镇原县| 富阳市| 汝阳县| 汉寿县| 元谋县| 通道| 晋宁县| 天等县|