找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Liaison, Schottky Problem and Invariant Theory; Remembering Federico María Emilia Alonso,Enrique Arrondo,Ignacio Sols Book 2010 Birkh?user

[復(fù)制鏈接]
查看: 30818|回復(fù): 52
樓主
發(fā)表于 2025-3-21 18:54:53 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Liaison, Schottky Problem and Invariant Theory
副標題Remembering Federico
編輯María Emilia Alonso,Enrique Arrondo,Ignacio Sols
視頻videohttp://file.papertrans.cn/586/585537/585537.mp4
概述Linkage theory is revisited with a survey and several original research papers.There is a survey and two original research papers on Schottky problem.An unpublished article of Federico Gaeta is includ
叢書名稱Progress in Mathematics
圖書封面Titlebook: Liaison, Schottky Problem and Invariant Theory; Remembering Federico María Emilia Alonso,Enrique Arrondo,Ignacio Sols Book 2010 Birkh?user
描述Federico Gaeta (1923–2007) was a Spanish algebraic geometer who was a student of Severi. He is considered to be one of the founders of linkage theory, on which he published several key papers. After many years abroad he came back to Spain in the 1980s. He spent his last period as a professor at Universidad Complutense de Madrid. In gratitude to him, some of his personal and mathematically close persons during this last station, all of whom bene?ted in one way or another by his ins- ration, have joined to edit this volume to keep his memory alive. We o?er in it surveys and original articles on the three main subjects of Gaeta’s interest through his mathematical life. The volume opens with a personal semblance by Ignacio Sols and a historical presentation by Ciro Ciliberto of Gaeta’s Italian period. Then it is divided into three parts, each of them devoted to a speci?c subject studied by Gaeta and coordinated by one of the editors. For each part, we had the advice of another colleague of Federico linked to that particular subject, who also contributed with a short survey. The ?rst part, coordinated by E. Arrondo with the advice of R.M.
出版日期Book 2010
關(guān)鍵詞Liaison theory; Scheme; Schottky problem; abelian variety; invariants
版次1
doihttps://doi.org/10.1007/978-3-0346-0201-3
isbn_ebook978-3-0346-0201-3Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightBirkh?user Basel 2010
The information of publication is updating

書目名稱Liaison, Schottky Problem and Invariant Theory影響因子(影響力)




書目名稱Liaison, Schottky Problem and Invariant Theory影響因子(影響力)學(xué)科排名




書目名稱Liaison, Schottky Problem and Invariant Theory網(wǎng)絡(luò)公開度




書目名稱Liaison, Schottky Problem and Invariant Theory網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Liaison, Schottky Problem and Invariant Theory被引頻次




書目名稱Liaison, Schottky Problem and Invariant Theory被引頻次學(xué)科排名




書目名稱Liaison, Schottky Problem and Invariant Theory年度引用




書目名稱Liaison, Schottky Problem and Invariant Theory年度引用學(xué)科排名




書目名稱Liaison, Schottky Problem and Invariant Theory讀者反饋




書目名稱Liaison, Schottky Problem and Invariant Theory讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:06:16 | 只看該作者
Minimal Links and a Result of Gaeta give a negative answer to this question with a class of counterexamples for codimension two subschemes of projective n-space..On the other hand, we show that there . even liaison classes of non-ACM curves in projective 3-space for which every element admits a sequence of minimal links leading to a
板凳
發(fā)表于 2025-3-22 04:11:29 | 只看該作者
地板
發(fā)表于 2025-3-22 06:38:08 | 只看該作者
5#
發(fā)表于 2025-3-22 10:03:17 | 只看該作者
alytics, Wireless sensors, IoT, Geospatial technology, Engineering and Mechanization, Modeling Tools, Risk analytics, and preventive systems..978-3-031-26383-5978-3-031-26384-2Series ISSN 2367-3370 Series E-ISSN 2367-3389
6#
發(fā)表于 2025-3-22 13:05:35 | 只看該作者
ures that have played a vital role during the COVID-19 pandemic. This study aims to present an analysis of the readiness of smart manufacturing. Based on the results of this study, it is concluded that Smart manufacturing-based artificial intelligence solutions are very important in times of uncerta
7#
發(fā)表于 2025-3-22 18:23:44 | 只看該作者
8#
發(fā)表于 2025-3-23 01:05:02 | 只看該作者
9#
發(fā)表于 2025-3-23 02:06:35 | 只看該作者
time series (USRFTS) and the various architectures that tackle this problem, from RNNs and their derivatives like LSTM and GRU to the attention mechanism, and mainly self-attention the mechanism behind the transformers architecture. We also highlighted some limitations in using each model, some of
10#
發(fā)表于 2025-3-23 09:09:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 07:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
北海市| 庆安县| 梁河县| 天镇县| 澄城县| 育儿| 吉林省| 抚州市| 宜春市| 修水县| 彭泽县| 策勒县| 疏勒县| 衡南县| 梨树县| 灵丘县| 商城县| 交口县| 延川县| 普陀区| 曲水县| 铅山县| 夏河县| 金坛市| 屯昌县| 南和县| 中山市| 定西市| 涿鹿县| 聂荣县| 花莲市| 和林格尔县| 甘泉县| 个旧市| 双江| 闽侯县| 临沭县| 唐河县| 冷水江市| 梁河县| 清新县|