找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Leveraging Data Science for Global Health; Leo Anthony Celi,Maimuna S. Majumder,Melek Somai Textbook‘‘‘‘‘‘‘‘ 2020 The Editor(s) (if applic

[復(fù)制鏈接]
樓主: Enkephalin
11#
發(fā)表于 2025-3-23 12:35:34 | 只看該作者
12#
發(fā)表于 2025-3-23 15:46:49 | 只看該作者
13#
發(fā)表于 2025-3-23 21:42:49 | 只看該作者
14#
發(fā)表于 2025-3-24 01:17:25 | 只看該作者
Machine Learning for Clinical Predictive Analyticsliability. In the second section, we will introduce several important concepts in machine learning in a colloquial manner, such as learning scenarios, objective/target function, error and loss function and metrics, optimization and model validation, and finally a summary of model selection methods (
15#
發(fā)表于 2025-3-24 05:33:33 | 只看該作者
itional digital disease data sources – including news media, social media, Google Trends, and Google Street View – can fill critical knowledge gaps and help inform on-the-ground decision-making when formal surveillance systems are insufficient..978-3-030-47996-1978-3-030-47994-7
16#
發(fā)表于 2025-3-24 07:38:37 | 只看該作者
17#
發(fā)表于 2025-3-24 13:59:06 | 只看該作者
http://image.papertrans.cn/l/image/585401.jpg
18#
發(fā)表于 2025-3-24 18:37:16 | 只看該作者
https://doi.org/10.1007/978-3-030-47994-7Open Access; Big Data; Machine Learning; Artificial Intelligence; Health Informatics; Digital Disease Sur
19#
發(fā)表于 2025-3-24 21:33:06 | 只看該作者
Machine Learning for Patient Stratification and Classification Part 1: Data Preparation and Analysisugh the basic concepts underlying machine learning and the tools needed to easily implement it using the Python programming language and Jupyter notebook documents. It is divided into three main parts: part 1—data preparation and analysis; part 2—unsupervised learning for clustering, and part 3—supervised learning for classification.
20#
發(fā)表于 2025-3-25 02:32:34 | 只看該作者
Machine Learning for Patient Stratification and Classification Part 2: Unsupervised Learning with Clugh the basic concepts underlying machine learning and the tools needed to easily implement it using the Python programming language and Jupyter notebook documents. It is divided into three main parts: part 1—data preparation and analysis; part 2—unsupervised learning for clustering and part 3—supervised learning for classification.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 12:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乐清市| 修水县| 嘉义县| 峨山| 嘉义县| 咸丰县| 灌南县| 连南| 清涧县| 大厂| 福建省| 叶城县| 大英县| 吴桥县| 太谷县| 玉林市| 通化市| 申扎县| 古田县| 武定县| 晋城| 宣恩县| 石阡县| 温州市| 从化市| 磴口县| 宜阳县| 双柏县| 太保市| 昌平区| 定安县| 浦东新区| 德惠市| 资溪县| 蒲江县| 同德县| 福建省| 湟源县| 盐山县| 获嘉县| 博客|