找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Lesion Segmentation in Surgical and Diagnostic Applications; MICCAI 2022 Challeng Yiming Xiao,Guanyu Yang,Shuang Song Conference proceeding

[復(fù)制鏈接]
樓主: 時(shí)間
31#
發(fā)表于 2025-3-27 00:57:44 | 只看該作者
Md Mahfuzur Rahman Siddiquee,Dong Yang,Yufan He,Daguang Xu,Andriy Myronenko
32#
發(fā)表于 2025-3-27 01:14:24 | 只看該作者
33#
發(fā)表于 2025-3-27 06:11:18 | 只看該作者
34#
發(fā)表于 2025-3-27 10:16:09 | 只看該作者
35#
發(fā)表于 2025-3-27 17:37:25 | 只看該作者
36#
發(fā)表于 2025-3-27 21:46:06 | 只看該作者
A Segmentation Network Based on 3D U-Net for Automatic Renal Cancer Structure Segmentation in CTA Imved the state-of-the-art, also Dice Similarity Coefficient (DSC) and Average Hausdorff Distance (AVD) of renal artery. According to the results in the KiPA22 challenge, our method have a better segmentation performance in CTA images.
37#
發(fā)表于 2025-3-27 23:24:55 | 只看該作者
Boundary-Aware Network for?Kidney Parsinge are used as attention to enhance the segmentation feature maps. We evaluated the BA-Net on the Kidney PArsing (KiPA) Challenge dataset and achieved an average Dice score of 89.65. for kidney structures segmentation on CTA scans using 4-fold cross-validation. The results demonstrate the effectivene
38#
發(fā)表于 2025-3-28 03:34:54 | 只看該作者
CANet: Channel Extending and?Axial Attention Catching Network for?Multi-structure Kidney Segmentatioation. Our solution is founded based on the thriving nn-UNet architecture. Firstly, by extending the channel size, we propose a larger network, which can provide a broader perspective, facilitating the extraction of complex structural information. Secondly, we include an axial attention catching(AAC
39#
發(fā)表于 2025-3-28 07:34:42 | 只看該作者
Segmentation of Intra-operative Ultrasound Using Self-supervised Learning Based 3D-ResUnet Model witthis encoder as a pre-trained weight for the Intra-operative ultrasound (iUS) segmentation. In the second stage, the pre-trained weighted-based 3DResUNet proposed model was used to train on the training dataset for iUS segmentation. Experiment on CuRIOUS -22 challenge showed that our proposed soluti
40#
發(fā)表于 2025-3-28 10:36:38 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 09:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
明溪县| 中山市| 靖边县| 绥滨县| 阿瓦提县| 瑞丽市| 土默特左旗| 广德县| 水富县| 延川县| 绿春县| 祁阳县| 乌拉特后旗| 涿鹿县| 蒲城县| 北海市| 抚远县| 兴宁市| 毕节市| 讷河市| 县级市| 南乐县| 海城市| 遂平县| 西安市| 长泰县| 华坪县| 白河县| 闸北区| 连江县| 扬中市| 辰溪县| 福鼎市| 会理县| 紫云| 广灵县| 香港| 泸水县| 米易县| 南溪县| 沙洋县|