找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Leitlinien für die Mund-, Kiefer- und Gesichtschirurgie; Alexander Kübler,Joachim Mühling Book 1998 Springer-Verlag Berlin Heidelberg 1998

[復(fù)制鏈接]
樓主: 開脫
21#
發(fā)表于 2025-3-25 04:10:18 | 只看該作者
Alexander Kübler,Joachim Mühlingresult about the pseudospectrum. Our goal is to study the spectrum of the following convection–diffusion operator .. defined on ..(Ω), where Ω is an unbounded open set of ?. and under a Dirichlet boundary condition. Our study is based upon pseudospectral theory because its tools are easier to handle
22#
發(fā)表于 2025-3-25 10:04:17 | 只看該作者
23#
發(fā)表于 2025-3-25 12:14:31 | 只看該作者
24#
發(fā)表于 2025-3-25 16:29:54 | 只看該作者
25#
發(fā)表于 2025-3-25 20:52:50 | 只看該作者
Alexander Kübler,Joachim Mühlingd by a large assortment of initial and boundary conditions. In certain circumstances, such models yield exact analytic solutions. When they do not, they are solved numerically by means of various approximation schemes. Whether analytic or numerical, these solutions share a common feature: they are c
26#
發(fā)表于 2025-3-26 01:08:37 | 只看該作者
27#
發(fā)表于 2025-3-26 07:11:18 | 只看該作者
28#
發(fā)表于 2025-3-26 11:55:39 | 只看該作者
Alexander Kübler,Joachim Mühlingproblems examined arise in real-life processes and phenomena, and the solution techniques range from theoretical integral equations to finite and boundary elements....Specific topics covered include spectral co978-0-8176-4671-4
29#
發(fā)表于 2025-3-26 15:05:28 | 只看該作者
30#
發(fā)表于 2025-3-26 20:11:34 | 只看該作者
Alexander Kübler,Joachim Mühlingrect numerical solution of the integral equation by collocation method. It is remarkable that even though solutions are close to trigonometric functions, they are not exactly equal to them. This fact is in contrast with the results of known constructive approaches to homogeneous Fredholm equations o
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 08:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
剑阁县| 古丈县| 阳东县| 云南省| 雷山县| 万宁市| 南雄市| 石阡县| 瓦房店市| 湾仔区| 长顺县| 景德镇市| 崇州市| 长泰县| 普格县| 临海市| 娱乐| 荣成市| 博兴县| 阿克陶县| 惠来县| 涿州市| 万源市| 修水县| 托里县| 嘉兴市| 汉源县| 阿合奇县| 罗山县| 贵定县| 乌恰县| 太和县| 平凉市| 诸暨市| 云浮市| 沅陵县| 木里| 扬中市| 保康县| 色达县| 涞水县|