找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lehrbuch der Algebra; Mit lebendigen Beisp Gerd Fischer Textbook 20112nd edition Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH

[復(fù)制鏈接]
樓主: 去是公開
31#
發(fā)表于 2025-3-27 00:38:18 | 只看該作者
Gerd FischerAlgebra leichter verst?ndlich mit vielen Beispielen für Lehramt und Bachelor
32#
發(fā)表于 2025-3-27 01:42:25 | 只看該作者
http://image.papertrans.cn/l/image/583919.jpg
33#
發(fā)表于 2025-3-27 06:58:35 | 只看該作者
34#
發(fā)表于 2025-3-27 11:35:23 | 只看該作者
Strukturs?tze*e wichtige Teilergebnisse. Die einfachste Invariante einer Isomorphieklasse ist die Ordnung: Zwei isomorphe Gruppen enthalten ?gleich viele” Elemente; sind sie endlich, so ist das eine natürliche Zahl ..
35#
發(fā)表于 2025-3-27 13:53:31 | 只看該作者
Ideale und Restklassenringe Analogon in der Ringtheorie sind ?Ideale”. Der Name entstand in der Zahlentheorie, wo man gew?hnliche Zahlen durch ?ideale Zahlen” ersetzt hat, um die Teilbarkeitseigenschaften zu verbessern (vgl. II 3.16).
36#
發(fā)表于 2025-3-27 21:13:45 | 只看該作者
37#
發(fā)表于 2025-3-28 00:14:58 | 只看該作者
Galois-Erweiterungenhachtelten Wurzeln. Das grundraubende Ergebnis von ABEL war, dass es solche allgemeinen Formeln für Polynome vom Grad ≥ 5 nicht geben kann; das wird in §5 erl?utert. Grundlage dafür ist die Galois-Theorie.
38#
發(fā)表于 2025-3-28 02:35:11 | 只看該作者
39#
發(fā)表于 2025-3-28 07:43:03 | 只看該作者
Strukturs?tze*e wichtige Teilergebnisse. Die einfachste Invariante einer Isomorphieklasse ist die Ordnung: Zwei isomorphe Gruppen enthalten ?gleich viele” Elemente; sind sie endlich, so ist das eine natürliche Zahl ..
40#
發(fā)表于 2025-3-28 14:20:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 17:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巨野县| 广水市| 甘南县| 扶绥县| 太保市| 齐齐哈尔市| 兴宁市| 陆良县| 无锡市| 犍为县| 农安县| 河源市| 突泉县| 余江县| 金秀| 原阳县| 连平县| 泰州市| 阜新| 屯门区| 余干县| 邹平县| 韶关市| 富民县| 克拉玛依市| 当阳市| 兴义市| 江北区| 孝昌县| 娱乐| 沛县| 崇文区| 衡东县| 化德县| 班戈县| 建湖县| 怀远县| 永丰县| 河源市| 勃利县| 将乐县|