找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lefschetz Properties; Current and New Dire Uwe Nagel,Karim Adiprasito,Satoshi Murai Conference proceedings 2024 The Editor(s) (if applicabl

[復(fù)制鏈接]
樓主: odometer
21#
發(fā)表于 2025-3-25 05:17:40 | 只看該作者
,Totally Nonnegative Toeplitz Matrices and?Hodge-Riemann Relations in?Codimension Two,is equal to the set of totally nonnegative Toeplitz matrices. The proof appeals to an interpretation of a Toeplitz matrix as the coefficient matrix of the higher mixed Hessian of a homogeneous polynomial in two variables. Regarding the homogeneous polynomial as the Macaulay dual generator of a certa
22#
發(fā)表于 2025-3-25 10:27:28 | 只看該作者
Notes on Lefschetz Properties and Linear Elements of Maximal Height with Applications,lay’s Double Duality Theorem in the guise of inverse systems to provide a criterion for the existance of such a form. We adopt the viewpoint that the presence or lack of a linear form of maximal height is a test for the strong Lefschetz property in a Poincaré duality algebra. In characteristic zero
23#
發(fā)表于 2025-3-25 14:37:29 | 只看該作者
,List of?Problems, a breakthrough in algebraic topology and geometry. Over the last few years, this topic has attracted increasing attention from mathematicians in various areas. Here, we suggest some important open problems about or related to Lefschetz properties of Artinian graded algebras with the ultimate aim to
24#
發(fā)表于 2025-3-25 15:52:58 | 只看該作者
25#
發(fā)表于 2025-3-25 22:09:38 | 只看該作者
,Totally Nonnegative Toeplitz Matrices and?Hodge-Riemann Relations in?Codimension Two,his short note is based on results from the longer paper “Higher Lorentzian polynomials, Higher Hessians, and Hodge-Riemann relations on Artinian Gorenstein algebras in codimension two” by P. Macias Marques, C. McDaniel, A. Seceleanu, and J. Watanabe (.).
26#
發(fā)表于 2025-3-26 03:23:00 | 只看該作者
27#
發(fā)表于 2025-3-26 08:16:24 | 只看該作者
,Unexpected Hypersurfaces and?Their Consequences: A Survey,ots of this theory. First we look at sets of points in . whose general projection is a planar complete intersection (so-called . sets). Although we now know a lot about these sets, much remains mysterious. Then we describe an interesting measure of unexpectedness called .-., which have a surprising structure that is not yet fully understood.
28#
發(fā)表于 2025-3-26 12:10:42 | 只看該作者
,Equivariant Euler Characteristics on?Permutohedral Varieties,uivariant .-theory and thus the Euler characteristic may be upgraded to a Laurent polynomial. We provide and implement three different approaches, in particular a recursive one, to computing these polynomials.
29#
發(fā)表于 2025-3-26 14:11:18 | 只看該作者
,Betti Tables Forcing Failure of?the?Weak Lefschetz Property,gel [.]. Our specific focus is on Betti tables rather than Hilbert functions, and we prove that a certain type of Betti table forces the failure of the Weak Lefschetz Property (WLP). The corresponding Artinian algebras are typically not level, and the failure of WLP in these cases is not detected in terms of the Hilbert function.
30#
發(fā)表于 2025-3-26 19:32:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 19:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
玉林市| 蓬溪县| 南投县| 平顶山市| 天水市| 松溪县| 偃师市| 常宁市| 五家渠市| 前郭尔| 孙吴县| 揭西县| 安达市| 永泰县| 九龙坡区| 柞水县| 安庆市| 桃源县| 五莲县| 成安县| 丁青县| 茶陵县| 德安县| 镇远县| 凌云县| 海林市| 恩施市| 大洼县| 浦东新区| 肇庆市| 西安市| 冕宁县| 定襄县| 资阳市| 平果县| 延吉市| 常山县| 凉城县| 衡阳县| 衡水市| 蛟河市|