找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lefschetz Properties; Current and New Dire Uwe Nagel,Karim Adiprasito,Satoshi Murai Conference proceedings 2024 The Editor(s) (if applicabl

[復(fù)制鏈接]
樓主: odometer
21#
發(fā)表于 2025-3-25 05:17:40 | 只看該作者
,Totally Nonnegative Toeplitz Matrices and?Hodge-Riemann Relations in?Codimension Two,is equal to the set of totally nonnegative Toeplitz matrices. The proof appeals to an interpretation of a Toeplitz matrix as the coefficient matrix of the higher mixed Hessian of a homogeneous polynomial in two variables. Regarding the homogeneous polynomial as the Macaulay dual generator of a certa
22#
發(fā)表于 2025-3-25 10:27:28 | 只看該作者
Notes on Lefschetz Properties and Linear Elements of Maximal Height with Applications,lay’s Double Duality Theorem in the guise of inverse systems to provide a criterion for the existance of such a form. We adopt the viewpoint that the presence or lack of a linear form of maximal height is a test for the strong Lefschetz property in a Poincaré duality algebra. In characteristic zero
23#
發(fā)表于 2025-3-25 14:37:29 | 只看該作者
,List of?Problems, a breakthrough in algebraic topology and geometry. Over the last few years, this topic has attracted increasing attention from mathematicians in various areas. Here, we suggest some important open problems about or related to Lefschetz properties of Artinian graded algebras with the ultimate aim to
24#
發(fā)表于 2025-3-25 15:52:58 | 只看該作者
25#
發(fā)表于 2025-3-25 22:09:38 | 只看該作者
,Totally Nonnegative Toeplitz Matrices and?Hodge-Riemann Relations in?Codimension Two,his short note is based on results from the longer paper “Higher Lorentzian polynomials, Higher Hessians, and Hodge-Riemann relations on Artinian Gorenstein algebras in codimension two” by P. Macias Marques, C. McDaniel, A. Seceleanu, and J. Watanabe (.).
26#
發(fā)表于 2025-3-26 03:23:00 | 只看該作者
27#
發(fā)表于 2025-3-26 08:16:24 | 只看該作者
,Unexpected Hypersurfaces and?Their Consequences: A Survey,ots of this theory. First we look at sets of points in . whose general projection is a planar complete intersection (so-called . sets). Although we now know a lot about these sets, much remains mysterious. Then we describe an interesting measure of unexpectedness called .-., which have a surprising structure that is not yet fully understood.
28#
發(fā)表于 2025-3-26 12:10:42 | 只看該作者
,Equivariant Euler Characteristics on?Permutohedral Varieties,uivariant .-theory and thus the Euler characteristic may be upgraded to a Laurent polynomial. We provide and implement three different approaches, in particular a recursive one, to computing these polynomials.
29#
發(fā)表于 2025-3-26 14:11:18 | 只看該作者
,Betti Tables Forcing Failure of?the?Weak Lefschetz Property,gel [.]. Our specific focus is on Betti tables rather than Hilbert functions, and we prove that a certain type of Betti table forces the failure of the Weak Lefschetz Property (WLP). The corresponding Artinian algebras are typically not level, and the failure of WLP in these cases is not detected in terms of the Hilbert function.
30#
發(fā)表于 2025-3-26 19:32:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 19:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鄂温| 光山县| 九台市| 涡阳县| 霍城县| 闵行区| 辽宁省| 江北区| 德保县| 南阳市| 房产| 竹北市| 托克逊县| 昌吉市| 弥渡县| 民乐县| 明星| 麦盖提县| 呈贡县| 津市市| 嵊泗县| 利辛县| 鸡东县| 阿鲁科尔沁旗| 安化县| 上犹县| 南宫市| 涞水县| 临桂县| 泰和县| 镇原县| 武汉市| 东宁县| 桐庐县| 三原县| 乌拉特前旗| 乡城县| 黎城县| 合山市| 武定县| 太白县|