找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Lectures on the structure of algebraic groups and geometric applications; Michel Brion,Preena Samuel,V. Uma Book 2013 Hindustan Book Agenc

[復(fù)制鏈接]
查看: 50315|回復(fù): 37
樓主
發(fā)表于 2025-3-21 16:06:41 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Lectures on the structure of algebraic groups and geometric applications
編輯Michel Brion,Preena Samuel,V. Uma
視頻videohttp://file.papertrans.cn/584/583638/583638.mp4
圖書封面Titlebook: Lectures on the structure of algebraic groups and geometric applications;  Michel Brion,Preena Samuel,V. Uma Book 2013 Hindustan Book Agenc
出版日期Book 2013
版次1
doihttps://doi.org/10.1007/978-93-86279-58-3
isbn_ebook978-93-86279-58-3
copyrightHindustan Book Agency (India) 2013
The information of publication is updating

書目名稱Lectures on the structure of algebraic groups and geometric applications影響因子(影響力)




書目名稱Lectures on the structure of algebraic groups and geometric applications影響因子(影響力)學(xué)科排名




書目名稱Lectures on the structure of algebraic groups and geometric applications網(wǎng)絡(luò)公開度




書目名稱Lectures on the structure of algebraic groups and geometric applications網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Lectures on the structure of algebraic groups and geometric applications被引頻次




書目名稱Lectures on the structure of algebraic groups and geometric applications被引頻次學(xué)科排名




書目名稱Lectures on the structure of algebraic groups and geometric applications年度引用




書目名稱Lectures on the structure of algebraic groups and geometric applications年度引用學(xué)科排名




書目名稱Lectures on the structure of algebraic groups and geometric applications讀者反饋




書目名稱Lectures on the structure of algebraic groups and geometric applications讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:49:18 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:29:09 | 只看該作者
Structure and automorphisms of complete homogeneous varieties, the proof in [Bri10a]. We begin by decomposing any complete homogeneous variety as the product of an abelian variety and a homogeneous variety under an affine group (Theorem 4.1.1). Then we turn to automorphisms: we show, quite generally, that the connected automorphism group scheme of a product of
地板
發(fā)表于 2025-3-22 07:06:14 | 只看該作者
Anti-affine groups,r structure and classification. The results that we present were obtained in [Bri09] and in [SS09], via two different approaches that are both valid over any base field. Here we mostly follow the former approach, with some simplifications.
5#
發(fā)表于 2025-3-22 09:03:36 | 只看該作者
intessential in generating adequate employment opportunity in an economy. With a gradual opening up of the Indian economy since mid-80s, the opportunity for growth for the Indian manufacturing firms has multiplied on one hand. On the other hand, the firms have to face the externalities emanating fro
6#
發(fā)表于 2025-3-22 15:48:25 | 只看該作者
Michel Brion,Preena Samuel,V. Umaintessential in generating adequate employment opportunity in an economy. With a gradual opening up of the Indian economy since mid-80s, the opportunity for growth for the Indian manufacturing firms has multiplied on one hand. On the other hand, the firms have to face the externalities emanating fro
7#
發(fā)表于 2025-3-22 19:55:26 | 只看該作者
http://image.papertrans.cn/l/image/583638.jpg
8#
發(fā)表于 2025-3-22 22:28:50 | 只看該作者
9#
發(fā)表于 2025-3-23 02:19:25 | 只看該作者
10#
發(fā)表于 2025-3-23 07:31:54 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 18:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁武县| 宜丰县| 县级市| 宜城市| 城市| 岑巩县| 六安市| 砚山县| 宁河县| 若尔盖县| 汾阳市| 高淳县| 建湖县| 綦江县| 会昌县| 东至县| 宽城| 资溪县| 温州市| 宜章县| 古田县| 平谷区| 资中县| 驻马店市| 邓州市| 芮城县| 长治县| 宜阳县| 泸溪县| 昭觉县| 晋城| 涪陵区| 赣州市| 新乡县| 涪陵区| 惠安县| 郓城县| 嵊泗县| 宁河县| 博罗县| 绿春县|