找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lectures on the Theory of Algebraic Numbers; Erich Hecke Textbook 1981 Springer Science+Business Media New York 1981 Algebraic.Algebraisch

[復(fù)制鏈接]
樓主: GLOAT
11#
發(fā)表于 2025-3-23 10:57:00 | 只看該作者
Elements of Rational Number Theory, division (not always) to form integers. Higher arithmetic uses methods of investigation analogous to those of real or complex numbers. Moreover it also uses analytic methods which belong to other areas of mathematics, such as infinitesimal calculus and complex function theory, in the derivation of
12#
發(fā)表于 2025-3-23 16:47:58 | 只看該作者
General Arithmetic of Algebraic Number Fields,d . = .(1). To develop the foundations of an arithmetic of algebraic numbers we first need a definition of algebraic integer. The following requirements can be reasonably imposed on a concept of integer.
13#
發(fā)表于 2025-3-23 21:24:59 | 只看該作者
14#
發(fā)表于 2025-3-24 02:14:45 | 只看該作者
The Law of Quadractic Reciprocity in Arbitrary Number Fields, was the first to recognize the great importance which these sums have in number theory. His attention was directed to the connection between these sums and the quadratic reciprocity law and he showed how a proof for the reciprocity law is obtained by determining the value of these sums. Today we kn
15#
發(fā)表于 2025-3-24 03:01:42 | 只看該作者
16#
發(fā)表于 2025-3-24 06:56:39 | 只看該作者
Lectures on the Theory of Algebraic Numbers978-1-4757-4092-9Series ISSN 0072-5285 Series E-ISSN 2197-5612
17#
發(fā)表于 2025-3-24 12:02:51 | 只看該作者
Graduate Texts in Mathematicshttp://image.papertrans.cn/l/image/583635.jpg
18#
發(fā)表于 2025-3-24 14:49:57 | 只看該作者
General Arithmetic of Algebraic Number Fields,d . = .(1). To develop the foundations of an arithmetic of algebraic numbers we first need a definition of algebraic integer. The following requirements can be reasonably imposed on a concept of integer.
19#
發(fā)表于 2025-3-24 19:30:09 | 只看該作者
20#
發(fā)表于 2025-3-25 01:17:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 02:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
岳池县| 浑源县| 金秀| 呼图壁县| 蓝山县| 娱乐| 合山市| 南乐县| 洪雅县| 永兴县| 桃江县| 古丈县| 神农架林区| 牙克石市| 孝义市| 三台县| 黎川县| 惠安县| 辽宁省| 衡南县| 乌兰浩特市| 桃园县| 大邑县| 溧水县| 比如县| 三门县| 宜君县| 内乡县| 岳普湖县| 东方市| 晋城| 丹凤县| 闽清县| 商河县| 美姑县| 沅陵县| 上蔡县| 阳春市| 潢川县| 庐江县| 泉州市|