找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lectures on the Theory of Algebraic Numbers; Erich Hecke Textbook 1981 Springer Science+Business Media New York 1981 Algebraic.Algebraisch

[復制鏈接]
樓主: GLOAT
11#
發(fā)表于 2025-3-23 10:57:00 | 只看該作者
Elements of Rational Number Theory, division (not always) to form integers. Higher arithmetic uses methods of investigation analogous to those of real or complex numbers. Moreover it also uses analytic methods which belong to other areas of mathematics, such as infinitesimal calculus and complex function theory, in the derivation of
12#
發(fā)表于 2025-3-23 16:47:58 | 只看該作者
General Arithmetic of Algebraic Number Fields,d . = .(1). To develop the foundations of an arithmetic of algebraic numbers we first need a definition of algebraic integer. The following requirements can be reasonably imposed on a concept of integer.
13#
發(fā)表于 2025-3-23 21:24:59 | 只看該作者
14#
發(fā)表于 2025-3-24 02:14:45 | 只看該作者
The Law of Quadractic Reciprocity in Arbitrary Number Fields, was the first to recognize the great importance which these sums have in number theory. His attention was directed to the connection between these sums and the quadratic reciprocity law and he showed how a proof for the reciprocity law is obtained by determining the value of these sums. Today we kn
15#
發(fā)表于 2025-3-24 03:01:42 | 只看該作者
16#
發(fā)表于 2025-3-24 06:56:39 | 只看該作者
Lectures on the Theory of Algebraic Numbers978-1-4757-4092-9Series ISSN 0072-5285 Series E-ISSN 2197-5612
17#
發(fā)表于 2025-3-24 12:02:51 | 只看該作者
Graduate Texts in Mathematicshttp://image.papertrans.cn/l/image/583635.jpg
18#
發(fā)表于 2025-3-24 14:49:57 | 只看該作者
General Arithmetic of Algebraic Number Fields,d . = .(1). To develop the foundations of an arithmetic of algebraic numbers we first need a definition of algebraic integer. The following requirements can be reasonably imposed on a concept of integer.
19#
發(fā)表于 2025-3-24 19:30:09 | 只看該作者
20#
發(fā)表于 2025-3-25 01:17:51 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 12:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
晋江市| 邛崃市| 遂平县| 平罗县| 贡觉县| 清镇市| 乐安县| 三亚市| 云龙县| 塔城市| 治多县| 曲沃县| 韶关市| 广水市| 泰安市| 建德市| 科技| 会理县| 娄底市| 清远市| 乌海市| 定西市| 武安市| 西宁市| 威远县| 资溪县| 成都市| 阳曲县| 汝阳县| 兰州市| 炎陵县| 东乡| 将乐县| 奉贤区| 宜黄县| 盐城市| 获嘉县| 长葛市| 垦利县| 眉山市| 滕州市|