找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lectures on the Nearest Neighbor Method; Gérard Biau,Luc Devroye Book 2015 Springer International Publishing Switzerland 2015 Density Esti

[復(fù)制鏈接]
樓主: STRI
21#
發(fā)表于 2025-3-25 07:24:27 | 只看該作者
Weighted ,-nearest neighbor density estimatesThere are different ways to weigh or smooth the .-nearest neighbor density estimate. Some key ideas are surveyed in this chapter. For some of them, consistency theorems are stated.
22#
發(fā)表于 2025-3-25 10:19:11 | 只看該作者
Pointwise consistencyTheorem?11.1 below is a slight extension of a theorem due to Devroye?(1981a). It offers sufficient conditions on the probability weight vector guaranteeing that the (raw) nearest neighbor estimate (8.2) satisfies, for all .?≥?1.
23#
發(fā)表于 2025-3-25 14:36:06 | 只看該作者
Uniform consistencyThe supremum creates two problems—first of all, by moving . about ., the data ordering changes. We will count the number of possible data permutations in the second section. Second, we need a uniform condition on the “noise” . ? .(.) so that the averaging done by the weights .. is strong enough. This is addressed in the third section.
24#
發(fā)表于 2025-3-25 19:21:31 | 只看該作者
Advanced properties of uniform order statisticsVarious properties of ., uniform [0,?1] order statistics, will be needed in the analysis that follows. These are collected in the present chapter. The first group of properties is directly related to .. (1?≤?.?≤?.), while the second group deals with random linear combinations of them.
25#
發(fā)表于 2025-3-25 23:42:56 | 只看該作者
26#
發(fā)表于 2025-3-26 00:27:29 | 只看該作者
aching and learning the Chinese language...The wide-ranging contributions make the book an attractive resource for academics, think-tanks, diplomats, and researchers working on Asian/India–China studies across 978-981-99-4328-9978-981-99-4326-5
27#
發(fā)表于 2025-3-26 04:29:08 | 只看該作者
broad implications for developing countries in general and India in particular. This book will greatly benefit trade negotiators, policymakers, civil society, farmer groups, researchers, students, and academic978-981-33-6856-9978-981-33-6854-5Series ISSN 2198-0012 Series E-ISSN 2198-0020
28#
發(fā)表于 2025-3-26 10:17:37 | 只看該作者
29#
發(fā)表于 2025-3-26 14:23:13 | 只看該作者
30#
發(fā)表于 2025-3-26 20:18:39 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 21:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
湟源县| 桃园县| 湄潭县| 淮滨县| 武城县| 宣汉县| 平武县| 铜山县| 嘉峪关市| 仙桃市| 成武县| 信阳市| 南涧| 金山区| 伊通| 南召县| 棋牌| 连平县| 静乐县| 潮州市| 新和县| 通江县| 巴马| 乌海市| 博罗县| 寿阳县| 山东省| 桂东县| 乡城县| 南城县| 仁布县| 保德县| 定兴县| 恩施市| 莱阳市| 吉首市| 宁乡县| 阿拉善左旗| 昭通市| 泉州市| 霞浦县|