找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Lectures on the Mathematics of Quantum Mechanics II: Selected Topics; Gianfausto Dell‘Antonio Book 2016 Atlantis Press and the author(s) 2

[復(fù)制鏈接]
樓主: 海市蜃樓
21#
發(fā)表于 2025-3-25 07:17:15 | 只看該作者
Lecture 13: The N-Body Quantum System: Spectral Structure and Scattering,complete analysis and further references we refer to W. Hunziker, I. Sigal, Am. Math. Soc. 8:35–72, 1995, [.], M. Reed, B. Simon, Methods of Modern Mathematical Physics, 1978, [.], W. Hunziker, I.M. Sigal, J. Math. Phys. 41:3448–3510, 2000, [.], R.G. Froese, I. Herbst, Duke Math. J. 49:1075–1085, 1982, [.].
22#
發(fā)表于 2025-3-25 08:04:25 | 只看該作者
23#
發(fā)表于 2025-3-25 15:38:26 | 只看該作者
24#
發(fā)表于 2025-3-25 17:52:48 | 只看該作者
https://doi.org/10.2991/978-94-6239-115-4Lecture notes; Mathematics of Quantum Mechanics; Quantum Mechanics; Quantum Physics; Selected Topics in
25#
發(fā)表于 2025-3-25 22:38:54 | 只看該作者
Lecture 1: Wigner Functions. Coherent States. Gabor Transform. Semiclassical Correlation Functions,In Classical Mechanics a pure state is described by a Dirac measure supported by a point in phase space.
26#
發(fā)表于 2025-3-26 00:32:30 | 只看該作者
27#
發(fā)表于 2025-3-26 05:14:38 | 只看該作者
,Lecture 4: Periodic Potentials. Wigner–Seitz Cell and Brillouen Zone. Bloch and Wannier Functions,In this lecture we will give some basic elements of the theory of Schroedinger equation with periodic potentials.
28#
發(fā)表于 2025-3-26 10:16:12 | 只看該作者
29#
發(fā)表于 2025-3-26 13:47:10 | 只看該作者
,Lecture 6: Lie–Trotter Formula, Wiener Process, Feynman–Kac Formula,We begin recalling the Lie–Trotter formula.
30#
發(fā)表于 2025-3-26 19:30:08 | 只看該作者
Lecture 7: Elements of Probability Theory. Construction of Brownian Motion. Diffusions,We return briefly in this lecture to the realization of the Wiener process; we study here its realization from the point of view of semigroup theory, using transition functions. The same approach will be used in the next lecture to study the Ornstein–Uhlenbeck process.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 04:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
信丰县| 垫江县| 和平县| 武冈市| 阿勒泰市| 峨边| 小金县| 津市市| 甘孜县| 牡丹江市| 比如县| 新昌县| 黔西县| 永定县| 巍山| 辰溪县| 巴马| 浦城县| 镇康县| 松原市| 石屏县| 简阳市| 会宁县| 平湖市| 广丰县| 区。| 青河县| 云和县| 巩义市| 东兴市| 基隆市| 通州区| 长治市| 萍乡市| 湖南省| 定安县| 五华县| 龙陵县| 云林县| 古浪县| 西峡县|