找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lectures on the Mathematics of Quantum Mechanics II: Selected Topics; Gianfausto Dell‘Antonio Book 2016 Atlantis Press and the author(s) 2

[復(fù)制鏈接]
樓主: 海市蜃樓
21#
發(fā)表于 2025-3-25 07:17:15 | 只看該作者
Lecture 13: The N-Body Quantum System: Spectral Structure and Scattering,complete analysis and further references we refer to W. Hunziker, I. Sigal, Am. Math. Soc. 8:35–72, 1995, [.], M. Reed, B. Simon, Methods of Modern Mathematical Physics, 1978, [.], W. Hunziker, I.M. Sigal, J. Math. Phys. 41:3448–3510, 2000, [.], R.G. Froese, I. Herbst, Duke Math. J. 49:1075–1085, 1982, [.].
22#
發(fā)表于 2025-3-25 08:04:25 | 只看該作者
23#
發(fā)表于 2025-3-25 15:38:26 | 只看該作者
24#
發(fā)表于 2025-3-25 17:52:48 | 只看該作者
https://doi.org/10.2991/978-94-6239-115-4Lecture notes; Mathematics of Quantum Mechanics; Quantum Mechanics; Quantum Physics; Selected Topics in
25#
發(fā)表于 2025-3-25 22:38:54 | 只看該作者
Lecture 1: Wigner Functions. Coherent States. Gabor Transform. Semiclassical Correlation Functions,In Classical Mechanics a pure state is described by a Dirac measure supported by a point in phase space.
26#
發(fā)表于 2025-3-26 00:32:30 | 只看該作者
27#
發(fā)表于 2025-3-26 05:14:38 | 只看該作者
,Lecture 4: Periodic Potentials. Wigner–Seitz Cell and Brillouen Zone. Bloch and Wannier Functions,In this lecture we will give some basic elements of the theory of Schroedinger equation with periodic potentials.
28#
發(fā)表于 2025-3-26 10:16:12 | 只看該作者
29#
發(fā)表于 2025-3-26 13:47:10 | 只看該作者
,Lecture 6: Lie–Trotter Formula, Wiener Process, Feynman–Kac Formula,We begin recalling the Lie–Trotter formula.
30#
發(fā)表于 2025-3-26 19:30:08 | 只看該作者
Lecture 7: Elements of Probability Theory. Construction of Brownian Motion. Diffusions,We return briefly in this lecture to the realization of the Wiener process; we study here its realization from the point of view of semigroup theory, using transition functions. The same approach will be used in the next lecture to study the Ornstein–Uhlenbeck process.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 10:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巍山| 奉贤区| 金门县| 西充县| 平邑县| 周口市| 山阴县| 和政县| 龙岩市| 镇平县| 嘉荫县| 蓝田县| 罗源县| 米泉市| 北安市| 临沧市| 忻城县| 扶绥县| 平安县| 通辽市| 鄂尔多斯市| 子洲县| 东至县| 新安县| 于都县| 筠连县| 庆阳市| 亳州市| 莫力| 吉木萨尔县| 沂水县| 阿荣旗| 自治县| 吴旗县| 洪江市| 曲水县| 呼和浩特市| 新龙县| 格尔木市| 林口县| 固阳县|