找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lectures on the Hyperreals; An Introduction to N Robert Goldblatt Textbook 1998 Springer-Verlag Berlin Heidelberg 1998 Boolean algebra.Lebe

[復(fù)制鏈接]
查看: 52321|回復(fù): 52
樓主
發(fā)表于 2025-3-21 19:58:01 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Lectures on the Hyperreals
副標(biāo)題An Introduction to N
編輯Robert Goldblatt
視頻videohttp://file.papertrans.cn/584/583626/583626.mp4
叢書名稱Graduate Texts in Mathematics
圖書封面Titlebook: Lectures on the Hyperreals; An Introduction to N Robert Goldblatt Textbook 1998 Springer-Verlag Berlin Heidelberg 1998 Boolean algebra.Lebe
描述There are good reasons to believe that nonstandard analysis, in some ver- sion or other, will be the analysis of the future. KURT GODEL This book is a compilation and development of lecture notes written for a course on nonstandard analysis that I have now taught several times. Students taking the course have typically received previous introductions to standard real analysis and abstract algebra, but few have studied formal logic. Most of the notes have been used several times in class and revised in the light of that experience. The earlier chapters could be used as the basis of a course at the upper undergraduate level, but the work as a whole, including the later applications, may be more suited to a beginning graduate course. This prefacedescribes my motivationsand objectives in writingthe book. For the most part, these remarks are addressed to the potential instructor. Mathematical understanding develops by a mysterious interplay between intuitive insight and symbolic manipulation. Nonstandard analysis requires an enhanced sensitivity to the particular symbolic form that is used to ex- press our intuitions, and so the subject poses some unique and challenging pedagogical issu
出版日期Textbook 1998
關(guān)鍵詞Boolean algebra; Lebesgue measure; Riemann integral; calculus; construction; differential equation; eXist;
版次1
doihttps://doi.org/10.1007/978-1-4612-0615-6
isbn_softcover978-1-4612-6841-3
isbn_ebook978-1-4612-0615-6Series ISSN 0072-5285 Series E-ISSN 2197-5612
issn_series 0072-5285
copyrightSpringer-Verlag Berlin Heidelberg 1998
The information of publication is updating

書目名稱Lectures on the Hyperreals影響因子(影響力)




書目名稱Lectures on the Hyperreals影響因子(影響力)學(xué)科排名




書目名稱Lectures on the Hyperreals網(wǎng)絡(luò)公開度




書目名稱Lectures on the Hyperreals網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Lectures on the Hyperreals被引頻次




書目名稱Lectures on the Hyperreals被引頻次學(xué)科排名




書目名稱Lectures on the Hyperreals年度引用




書目名稱Lectures on the Hyperreals年度引用學(xué)科排名




書目名稱Lectures on the Hyperreals讀者反饋




書目名稱Lectures on the Hyperreals讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:21:45 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:00:23 | 只看該作者
0072-5285 book is a compilation and development of lecture notes written for a course on nonstandard analysis that I have now taught several times. Students taking the course have typically received previous introductions to standard real analysis and abstract algebra, but few have studied formal logic. Most
地板
發(fā)表于 2025-3-22 06:02:26 | 只看該作者
5#
發(fā)表于 2025-3-22 11:35:45 | 只看該作者
Graduate Texts in Mathematicshttp://image.papertrans.cn/l/image/583626.jpg
6#
發(fā)表于 2025-3-22 16:36:02 | 只看該作者
978-1-4612-6841-3Springer-Verlag Berlin Heidelberg 1998
7#
發(fā)表于 2025-3-22 19:34:50 | 只看該作者
Lectures on the Hyperreals978-1-4612-0615-6Series ISSN 0072-5285 Series E-ISSN 2197-5612
8#
發(fā)表于 2025-3-22 23:34:24 | 只看該作者
What Are the Hyperreals?A nonzero number ε is defined to be ., or ., if.In this case the reciprocal . will be ., or simply ., meaning that . Conversely, if a number ω has this last property, then . will be a nonzero infinitesimal.
9#
發(fā)表于 2025-3-23 02:01:07 | 只看該作者
10#
發(fā)表于 2025-3-23 07:19:36 | 只看該作者
Ultrapower Construction of the HyperrealsLet ? = {1, 2,…}, and let ?. be the set of all sequences of real numbers. A typical member of ?. has the form . = 〈.,.,.,… 〉, which may be denoted more briefly as 〈.: . ∈ ?〉 or just 〈.〉.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 00:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
霸州市| 法库县| 延长县| 梓潼县| 章丘市| 五河县| 常宁市| 甘谷县| 明水县| 肥城市| 兴化市| 五原县| 教育| 都江堰市| 龙南县| 大石桥市| 嘉兴市| 吴堡县| 祁门县| 丁青县| 仙居县| 云安县| 隆尧县| 绥阳县| 汉阴县| 南涧| 定南县| 安义县| 和政县| 墨江| 乐清市| 苏尼特右旗| 阿鲁科尔沁旗| 清水县| 临洮县| 兴国县| 普兰店市| 绥芬河市| 衢州市| 包头市| 江西省|