找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lectures on the Hyperreals; An Introduction to N Robert Goldblatt Textbook 1998 Springer-Verlag Berlin Heidelberg 1998 Boolean algebra.Lebe

[復(fù)制鏈接]
查看: 52321|回復(fù): 52
樓主
發(fā)表于 2025-3-21 19:58:01 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Lectures on the Hyperreals
副標(biāo)題An Introduction to N
編輯Robert Goldblatt
視頻videohttp://file.papertrans.cn/584/583626/583626.mp4
叢書名稱Graduate Texts in Mathematics
圖書封面Titlebook: Lectures on the Hyperreals; An Introduction to N Robert Goldblatt Textbook 1998 Springer-Verlag Berlin Heidelberg 1998 Boolean algebra.Lebe
描述There are good reasons to believe that nonstandard analysis, in some ver- sion or other, will be the analysis of the future. KURT GODEL This book is a compilation and development of lecture notes written for a course on nonstandard analysis that I have now taught several times. Students taking the course have typically received previous introductions to standard real analysis and abstract algebra, but few have studied formal logic. Most of the notes have been used several times in class and revised in the light of that experience. The earlier chapters could be used as the basis of a course at the upper undergraduate level, but the work as a whole, including the later applications, may be more suited to a beginning graduate course. This prefacedescribes my motivationsand objectives in writingthe book. For the most part, these remarks are addressed to the potential instructor. Mathematical understanding develops by a mysterious interplay between intuitive insight and symbolic manipulation. Nonstandard analysis requires an enhanced sensitivity to the particular symbolic form that is used to ex- press our intuitions, and so the subject poses some unique and challenging pedagogical issu
出版日期Textbook 1998
關(guān)鍵詞Boolean algebra; Lebesgue measure; Riemann integral; calculus; construction; differential equation; eXist;
版次1
doihttps://doi.org/10.1007/978-1-4612-0615-6
isbn_softcover978-1-4612-6841-3
isbn_ebook978-1-4612-0615-6Series ISSN 0072-5285 Series E-ISSN 2197-5612
issn_series 0072-5285
copyrightSpringer-Verlag Berlin Heidelberg 1998
The information of publication is updating

書目名稱Lectures on the Hyperreals影響因子(影響力)




書目名稱Lectures on the Hyperreals影響因子(影響力)學(xué)科排名




書目名稱Lectures on the Hyperreals網(wǎng)絡(luò)公開度




書目名稱Lectures on the Hyperreals網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Lectures on the Hyperreals被引頻次




書目名稱Lectures on the Hyperreals被引頻次學(xué)科排名




書目名稱Lectures on the Hyperreals年度引用




書目名稱Lectures on the Hyperreals年度引用學(xué)科排名




書目名稱Lectures on the Hyperreals讀者反饋




書目名稱Lectures on the Hyperreals讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:21:45 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:00:23 | 只看該作者
0072-5285 book is a compilation and development of lecture notes written for a course on nonstandard analysis that I have now taught several times. Students taking the course have typically received previous introductions to standard real analysis and abstract algebra, but few have studied formal logic. Most
地板
發(fā)表于 2025-3-22 06:02:26 | 只看該作者
5#
發(fā)表于 2025-3-22 11:35:45 | 只看該作者
Graduate Texts in Mathematicshttp://image.papertrans.cn/l/image/583626.jpg
6#
發(fā)表于 2025-3-22 16:36:02 | 只看該作者
978-1-4612-6841-3Springer-Verlag Berlin Heidelberg 1998
7#
發(fā)表于 2025-3-22 19:34:50 | 只看該作者
Lectures on the Hyperreals978-1-4612-0615-6Series ISSN 0072-5285 Series E-ISSN 2197-5612
8#
發(fā)表于 2025-3-22 23:34:24 | 只看該作者
What Are the Hyperreals?A nonzero number ε is defined to be ., or ., if.In this case the reciprocal . will be ., or simply ., meaning that . Conversely, if a number ω has this last property, then . will be a nonzero infinitesimal.
9#
發(fā)表于 2025-3-23 02:01:07 | 只看該作者
10#
發(fā)表于 2025-3-23 07:19:36 | 只看該作者
Ultrapower Construction of the HyperrealsLet ? = {1, 2,…}, and let ?. be the set of all sequences of real numbers. A typical member of ?. has the form . = 〈.,.,.,… 〉, which may be denoted more briefly as 〈.: . ∈ ?〉 or just 〈.〉.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 00:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
寻乌县| 广德县| 洪雅县| 鞍山市| 巍山| 承德县| 南平市| 宁南县| 柏乡县| 定安县| 杭锦后旗| 嘉祥县| 遵义市| 潼关县| 裕民县| 曲阜市| 黑龙江省| 三江| 平顺县| 天峻县| 乐都县| 揭西县| 利辛县| 西贡区| 大新县| 杭州市| 盐池县| 黑河市| 绵竹市| 尚志市| 新邵县| 瑞安市| 崇义县| 安仁县| 武强县| 长丰县| 新蔡县| 蓝田县| 高邑县| 车险| 平和县|