找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lectures on the Geometry of Numbers; Carl Ludwig Siegel,Komaravolu Chandrasekharan Book 1989 Springer-Verlag Berlin Heidelberg 1989 Volume

[復(fù)制鏈接]
樓主: 不同
11#
發(fā)表于 2025-3-23 11:59:16 | 只看該作者
Lecture II theory of numbers will be found in the study of points all of whose coordinates are integers. These points will be called . or .. The set of all .-points will be called a .. [See also § 5.] The following theorem about lattice points and convex bodies was proved by Minkowski.
12#
發(fā)表于 2025-3-23 15:44:32 | 只看該作者
13#
發(fā)表于 2025-3-23 21:20:35 | 只看該作者
Lecture XIInant of the corresponding symmetric matrix.] Let .. be the minimum value of the quadratic form on the lattice of .-points excluding the origin. In the previous lecture we showed that ${r_2} leqslant sqrt {frac{{4Delta }}{3}} ,$. and the equality sign holds if and only if the form is equivalent to .
14#
發(fā)表于 2025-3-23 23:16:35 | 只看該作者
15#
發(fā)表于 2025-3-24 05:04:56 | 只看該作者
16#
發(fā)表于 2025-3-24 09:33:51 | 只看該作者
17#
發(fā)表于 2025-3-24 14:20:25 | 只看該作者
18#
發(fā)表于 2025-3-24 18:03:47 | 只看該作者
19#
發(fā)表于 2025-3-24 20:31:17 | 只看該作者
Lecture XIInant of the corresponding symmetric matrix.] Let .. be the minimum value of the quadratic form on the lattice of .-points excluding the origin. In the previous lecture we showed that ${r_2} leqslant sqrt {frac{{4Delta }}{3}} ,$. and the equality sign holds if and only if the form is equivalent to . .
20#
發(fā)表于 2025-3-25 00:01:25 | 只看該作者
Lecture XIVd points not belonging to .. [Notation as in § 1 of Lecture XIII.] A boundary point of . may not belong to .; for example, the zero matrix does not belong to ., yet it is a boundary point of ., because . (λ arbitrary positive) belongs to R if . does, and we may let λ tend to zero.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 15:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
玛多县| 托克托县| 增城市| 柳林县| 邯郸县| 南江县| 浦江县| 湘潭市| 滨州市| 玉环县| 莱芜市| 沙洋县| 即墨市| 丹江口市| 库车县| 江陵县| 玉田县| 郧西县| 德江县| 射阳县| 石棉县| 鲜城| 桃江县| 峨眉山市| 临安市| 襄城县| 谢通门县| 乌兰浩特市| 乐业县| 潼关县| 英超| 双鸭山市| 任丘市| 白朗县| 平凉市| 元朗区| 盐山县| 昆明市| 米林县| 湖口县| 宁德市|