找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lectures on the Geometry of Numbers; Carl Ludwig Siegel,Komaravolu Chandrasekharan Book 1989 Springer-Verlag Berlin Heidelberg 1989 Volume

[復(fù)制鏈接]
樓主: 不同
11#
發(fā)表于 2025-3-23 11:59:16 | 只看該作者
Lecture II theory of numbers will be found in the study of points all of whose coordinates are integers. These points will be called . or .. The set of all .-points will be called a .. [See also § 5.] The following theorem about lattice points and convex bodies was proved by Minkowski.
12#
發(fā)表于 2025-3-23 15:44:32 | 只看該作者
13#
發(fā)表于 2025-3-23 21:20:35 | 只看該作者
Lecture XIInant of the corresponding symmetric matrix.] Let .. be the minimum value of the quadratic form on the lattice of .-points excluding the origin. In the previous lecture we showed that ${r_2} leqslant sqrt {frac{{4Delta }}{3}} ,$. and the equality sign holds if and only if the form is equivalent to .
14#
發(fā)表于 2025-3-23 23:16:35 | 只看該作者
15#
發(fā)表于 2025-3-24 05:04:56 | 只看該作者
16#
發(fā)表于 2025-3-24 09:33:51 | 只看該作者
17#
發(fā)表于 2025-3-24 14:20:25 | 只看該作者
18#
發(fā)表于 2025-3-24 18:03:47 | 只看該作者
19#
發(fā)表于 2025-3-24 20:31:17 | 只看該作者
Lecture XIInant of the corresponding symmetric matrix.] Let .. be the minimum value of the quadratic form on the lattice of .-points excluding the origin. In the previous lecture we showed that ${r_2} leqslant sqrt {frac{{4Delta }}{3}} ,$. and the equality sign holds if and only if the form is equivalent to . .
20#
發(fā)表于 2025-3-25 00:01:25 | 只看該作者
Lecture XIVd points not belonging to .. [Notation as in § 1 of Lecture XIII.] A boundary point of . may not belong to .; for example, the zero matrix does not belong to ., yet it is a boundary point of ., because . (λ arbitrary positive) belongs to R if . does, and we may let λ tend to zero.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 20:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿鲁科尔沁旗| 信丰县| 赤城县| 昌吉市| 视频| 靖宇县| 商河县| 开封县| 焦作市| 灵宝市| 井冈山市| 潢川县| 嘉兴市| 海晏县| 犍为县| 巧家县| 旌德县| 玛纳斯县| 孝感市| 西宁市| 泗水县| 成安县| 临清市| 望谟县| 泰顺县| 舒城县| 华坪县| 略阳县| 宁都县| 丁青县| 怀来县| 肃南| 青岛市| 宜昌市| 都昌县| 驻马店市| 大洼县| 通河县| 土默特右旗| 徐闻县| 昭觉县|