找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Lectures on Random Interfaces; Tadahisa Funaki Book 2016 The Author(s) 2016 Scaling limits for pinned interface model.Dynamic Young diagra

[復(fù)制鏈接]
查看: 34294|回復(fù): 36
樓主
發(fā)表于 2025-3-21 19:00:31 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Lectures on Random Interfaces
編輯Tadahisa Funaki
視頻videohttp://file.papertrans.cn/584/583589/583589.mp4
概述Shows that the microscopic point of view is useful in choosing a real minimizer of a variational problem that determines an interface shape.Is the first book to discuss the stochastic extension of the
叢書(shū)名稱(chēng)SpringerBriefs in Probability and Mathematical Statistics
圖書(shū)封面Titlebook: Lectures on Random Interfaces;  Tadahisa Funaki Book 2016 The Author(s) 2016 Scaling limits for pinned interface model.Dynamic Young diagra
描述Interfaces are created to separate two distinct phases in a situation in which phase coexistence occurs. This book discusses randomly fluctuating interfaces in several different settings and from several points of view: discrete/continuum, microscopic/macroscopic, and static/dynamic theories. The following four topics in particular are dealt with in the book..Assuming that the interface is represented as a height function measured from a fixed-reference discretized hyperplane, the system is governed by the Hamiltonian of gradient of the height functions. This is a kind of effective interface model called ?φ-interface model. The scaling limits are studied for Gaussian (or non-Gaussian) random fields with a pinning effect under a situation in which the rate functional of the corresponding large deviation principle has non-unique minimizers..Young diagrams determine decreasing interfaces, and their dynamics are introduced. The large-scale behavior of such dynamicsis studied from the points of view of the hydrodynamic limit and non-equilibrium fluctuation theory. Vershik curves are derived in that limit..A sharp interface limit for the Allen–Cahn equation, that is, a reaction–diffusion
出版日期Book 2016
關(guān)鍵詞Scaling limits for pinned interface model; Dynamic Young diagrams; Introduction to stochastic partial
版次1
doihttps://doi.org/10.1007/978-981-10-0849-8
isbn_softcover978-981-10-0848-1
isbn_ebook978-981-10-0849-8Series ISSN 2365-4333 Series E-ISSN 2365-4341
issn_series 2365-4333
copyrightThe Author(s) 2016
The information of publication is updating

書(shū)目名稱(chēng)Lectures on Random Interfaces影響因子(影響力)




書(shū)目名稱(chēng)Lectures on Random Interfaces影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Lectures on Random Interfaces網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Lectures on Random Interfaces網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Lectures on Random Interfaces被引頻次




書(shū)目名稱(chēng)Lectures on Random Interfaces被引頻次學(xué)科排名




書(shū)目名稱(chēng)Lectures on Random Interfaces年度引用




書(shū)目名稱(chēng)Lectures on Random Interfaces年度引用學(xué)科排名




書(shū)目名稱(chēng)Lectures on Random Interfaces讀者反饋




書(shū)目名稱(chēng)Lectures on Random Interfaces讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:40:37 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:04:06 | 只看該作者
地板
發(fā)表于 2025-3-22 06:49:04 | 只看該作者
5#
發(fā)表于 2025-3-22 12:12:16 | 只看該作者
6#
發(fā)表于 2025-3-22 13:28:59 | 只看該作者
7#
發(fā)表于 2025-3-22 18:07:14 | 只看該作者
8#
發(fā)表于 2025-3-23 00:33:37 | 只看該作者
9#
發(fā)表于 2025-3-23 02:36:49 | 只看該作者
the options for how to deal with it.Covers asteroids, comets.‘Incoming Asteroid!’ is based on a project within ASTRA (the Association in Scotland to Research into Astronautics) to provide scientific answers to the question – what would we do if we knew there was going to be an asteroid impact in ten
10#
發(fā)表于 2025-3-23 06:33:26 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 03:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
扶风县| 麦盖提县| 军事| 白水县| 邳州市| 乌拉特中旗| 怀柔区| 壶关县| 嘉义市| 临朐县| 陵川县| 贺州市| 河池市| 深州市| 凤凰县| 克东县| 剑川县| 文化| 上饶市| 岑巩县| 庄河市| 巴塘县| 禄丰县| 五家渠市| 桐庐县| 田东县| 册亨县| 柞水县| 佛学| 读书| 南宫市| 克东县| 广德县| 贵州省| 武威市| 嘉义市| 库尔勒市| 饶河县| 禹州市| 沅陵县| 米易县|