找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lectures on Numerical Radius Inequalities; Pintu Bhunia,Silvestru Sever Dragomir,Kallol Paul Book 2022 The Editor(s) (if applicable) and T

[復制鏈接]
樓主: 無力向前
31#
發(fā)表于 2025-3-27 00:25:11 | 只看該作者
32#
發(fā)表于 2025-3-27 02:48:15 | 只看該作者
,Numerical Radius Inequalities of?Product of?Operators,The spectral mapping theorem ensures that for a bounded linear operator . on a complex Hilbert space ., . where . is an analytic function on a domain containing . Unfortunately, there is no such relation for the numerical range of a bounded linear operator, that is, . for ..
33#
發(fā)表于 2025-3-27 07:20:54 | 只看該作者
,Numerical Radius of?Operator Matrices and?Applications,Suppose . is a complex Hilbert space, and . is a bounded linear operator on
34#
發(fā)表于 2025-3-27 13:10:22 | 只看該作者
,Operator Space Numerical Radius of?, Block Matrices,In this chapter, following [57], the notion of complete numerical radius norm is studied and it is shown that the complete numerical radius norm of a completely bounded homomorphism can be computed in terms of the completely bounded norm of the map.
35#
發(fā)表于 2025-3-27 13:46:17 | 只看該作者
,-Numerical Radius Inequalities in?Semi-Hilbertian Spaces,Over the years, many mathematicians have studied different generalizations of the usual numerical radius of a bounded linear operator acting on a complex Hilbert space ., see [2, 147, 174].
36#
發(fā)表于 2025-3-27 20:17:31 | 只看該作者
Research Problems,In this chapter, we present a number of research problems related to numerical range and numerical radius with various levels of difficulty. For most problems, we provide some references helping the reader to see the background needed to well understand and start thinking about them. Some of the problems given below are known and some are new.
37#
發(fā)表于 2025-3-28 00:08:46 | 只看該作者
38#
發(fā)表于 2025-3-28 05:15:27 | 只看該作者
39#
發(fā)表于 2025-3-28 06:30:04 | 只看該作者
40#
發(fā)表于 2025-3-28 10:41:34 | 只看該作者
9樓
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 17:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
汝南县| 北川| 太原市| 阿勒泰市| 曲水县| 开江县| 城固县| 新建县| 上犹县| 平遥县| 光泽县| 定日县| 徐州市| 灌南县| 无锡市| 娱乐| 越西县| 古丈县| 灵武市| 哈巴河县| 科尔| 庆阳市| 江孜县| 徐闻县| 桑植县| 高州市| 怀宁县| 万荣县| 筠连县| 砀山县| 玛纳斯县| 北流市| 瓮安县| 石林| 武隆县| 修水县| 河北省| 武宣县| 和硕县| 湛江市| 仙游县|