找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lectures on Numerical Radius Inequalities; Pintu Bhunia,Silvestru Sever Dragomir,Kallol Paul Book 2022 The Editor(s) (if applicable) and T

[復制鏈接]
樓主: 無力向前
31#
發(fā)表于 2025-3-27 00:25:11 | 只看該作者
32#
發(fā)表于 2025-3-27 02:48:15 | 只看該作者
,Numerical Radius Inequalities of?Product of?Operators,The spectral mapping theorem ensures that for a bounded linear operator . on a complex Hilbert space ., . where . is an analytic function on a domain containing . Unfortunately, there is no such relation for the numerical range of a bounded linear operator, that is, . for ..
33#
發(fā)表于 2025-3-27 07:20:54 | 只看該作者
,Numerical Radius of?Operator Matrices and?Applications,Suppose . is a complex Hilbert space, and . is a bounded linear operator on
34#
發(fā)表于 2025-3-27 13:10:22 | 只看該作者
,Operator Space Numerical Radius of?, Block Matrices,In this chapter, following [57], the notion of complete numerical radius norm is studied and it is shown that the complete numerical radius norm of a completely bounded homomorphism can be computed in terms of the completely bounded norm of the map.
35#
發(fā)表于 2025-3-27 13:46:17 | 只看該作者
,-Numerical Radius Inequalities in?Semi-Hilbertian Spaces,Over the years, many mathematicians have studied different generalizations of the usual numerical radius of a bounded linear operator acting on a complex Hilbert space ., see [2, 147, 174].
36#
發(fā)表于 2025-3-27 20:17:31 | 只看該作者
Research Problems,In this chapter, we present a number of research problems related to numerical range and numerical radius with various levels of difficulty. For most problems, we provide some references helping the reader to see the background needed to well understand and start thinking about them. Some of the problems given below are known and some are new.
37#
發(fā)表于 2025-3-28 00:08:46 | 只看該作者
38#
發(fā)表于 2025-3-28 05:15:27 | 只看該作者
39#
發(fā)表于 2025-3-28 06:30:04 | 只看該作者
40#
發(fā)表于 2025-3-28 10:41:34 | 只看該作者
9樓
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 17:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
卢湾区| 星子县| 南城县| 公安县| 永清县| 孙吴县| 廊坊市| 吉木乃县| 弥渡县| 岚皋县| 衡山县| 兴和县| 永福县| 乌拉特后旗| 湄潭县| 东至县| 松潘县| 乌海市| 衡阳县| 绥芬河市| 琼中| 清流县| 沁水县| 通江县| 平谷区| 桦川县| 易门县| 中阳县| 南阳市| 阳东县| 日土县| 澎湖县| 阿瓦提县| 桃源县| 贡嘎县| 秀山| 黔西| 和龙市| 襄樊市| 江山市| 厦门市|