找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lectures on Numerical Radius Inequalities; Pintu Bhunia,Silvestru Sever Dragomir,Kallol Paul Book 2022 The Editor(s) (if applicable) and T

[復(fù)制鏈接]
樓主: 無力向前
21#
發(fā)表于 2025-3-25 05:44:25 | 只看該作者
Pintu Bhunia,Silvestru Sever Dragomir,Mohammad Sal Moslehian,Kallol Paul
22#
發(fā)表于 2025-3-25 10:13:31 | 只看該作者
23#
發(fā)表于 2025-3-25 13:38:35 | 只看該作者
24#
發(fā)表于 2025-3-25 19:22:40 | 只看該作者
25#
發(fā)表于 2025-3-25 23:15:00 | 只看該作者
Book 2022 spaces. The study of numerical range and numerical radius has a long and distinguished history starting from the Rayleigh quotients used in the 19th century to nowadays applications in quantum information theory and quantum computing..This monograph is intended for use by both researchers and gradu
26#
發(fā)表于 2025-3-26 02:49:07 | 只看該作者
978-3-031-13672-6The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
27#
發(fā)表于 2025-3-26 07:26:33 | 只看該作者
Lectures on Numerical Radius Inequalities978-3-031-13670-2Series ISSN 2363-6149 Series E-ISSN 2363-6157
28#
發(fā)表于 2025-3-26 10:32:48 | 只看該作者
Fundamental Numerical Radius Inequalities,erator . on a complex Hilbert space ., to be denoted by .(.),? is defined as the range of the continuous mapping . defined on the unit sphere of the Hilbert space ., that is, The study of numerical range assists in understanding the behavior of a bounded linear operator.
29#
發(fā)表于 2025-3-26 13:46:40 | 只看該作者
,Bounds of?the?Numerical Radius Using Buzano’s Inequality,sky–Schwarz inequality. The elementary form of Cauchy–Schwarz inequality states that if . and . are real numbers, then .Its general form in an inner-product space is (.). The Cauchy–Schwarz inequality was wonderfully refined in 1971 by Buzano [49].
30#
發(fā)表于 2025-3-26 17:33:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 19:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
寿光市| 巫山县| 施甸县| 兴义市| 梓潼县| 锡林郭勒盟| 台北县| 灵宝市| 桃园市| 平乡县| 苏尼特右旗| 湖北省| 商洛市| 伊吾县| 伊吾县| 哈尔滨市| 广丰县| 固阳县| 鄱阳县| 安福县| 包头市| 桃江县| 香河县| 观塘区| 北票市| 威远县| 枞阳县| 陇西县| 永城市| 惠州市| 岐山县| 游戏| 赞皇县| 滕州市| 汕尾市| 大邑县| 仲巴县| 镶黄旗| 郸城县| 海安县| 绩溪县|