找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lectures on Numerical Radius Inequalities; Pintu Bhunia,Silvestru Sever Dragomir,Kallol Paul Book 2022 The Editor(s) (if applicable) and T

[復(fù)制鏈接]
樓主: 無力向前
21#
發(fā)表于 2025-3-25 05:44:25 | 只看該作者
Pintu Bhunia,Silvestru Sever Dragomir,Mohammad Sal Moslehian,Kallol Paul
22#
發(fā)表于 2025-3-25 10:13:31 | 只看該作者
23#
發(fā)表于 2025-3-25 13:38:35 | 只看該作者
24#
發(fā)表于 2025-3-25 19:22:40 | 只看該作者
25#
發(fā)表于 2025-3-25 23:15:00 | 只看該作者
Book 2022 spaces. The study of numerical range and numerical radius has a long and distinguished history starting from the Rayleigh quotients used in the 19th century to nowadays applications in quantum information theory and quantum computing..This monograph is intended for use by both researchers and gradu
26#
發(fā)表于 2025-3-26 02:49:07 | 只看該作者
978-3-031-13672-6The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
27#
發(fā)表于 2025-3-26 07:26:33 | 只看該作者
Lectures on Numerical Radius Inequalities978-3-031-13670-2Series ISSN 2363-6149 Series E-ISSN 2363-6157
28#
發(fā)表于 2025-3-26 10:32:48 | 只看該作者
Fundamental Numerical Radius Inequalities,erator . on a complex Hilbert space ., to be denoted by .(.),? is defined as the range of the continuous mapping . defined on the unit sphere of the Hilbert space ., that is, The study of numerical range assists in understanding the behavior of a bounded linear operator.
29#
發(fā)表于 2025-3-26 13:46:40 | 只看該作者
,Bounds of?the?Numerical Radius Using Buzano’s Inequality,sky–Schwarz inequality. The elementary form of Cauchy–Schwarz inequality states that if . and . are real numbers, then .Its general form in an inner-product space is (.). The Cauchy–Schwarz inequality was wonderfully refined in 1971 by Buzano [49].
30#
發(fā)表于 2025-3-26 17:33:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 19:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
白城市| 乡宁县| 托克逊县| 四会市| 彭州市| 建瓯市| 胶州市| 尚志市| 南溪县| 文成县| 白水县| 湛江市| 徐州市| 加查县| 绥棱县| 买车| 贺州市| 石门县| 建阳市| 唐河县| 肃宁县| 汝阳县| 阿图什市| 武冈市| 大连市| 张家界市| 东光县| 郴州市| 耒阳市| 遂川县| 沐川县| 瓦房店市| 四会市| 万州区| 深州市| 靖江市| 台前县| 射洪县| 万荣县| 化州市| 长垣县|