找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lectures on Mathematical Theory of Extremum Problems; Igor Vladimirovich Girsanov,B. T. Poljak Book 1972 Springer-Verlag Berlin · Heidelbe

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 03:57:00 | 只看該作者
22#
發(fā)表于 2025-3-25 11:02:56 | 只看該作者
23#
發(fā)表于 2025-3-25 12:02:26 | 只看該作者
Sufficient Extremum Conditions. Examples,We now apply the results of the preceding lecture to various problems.
24#
發(fā)表于 2025-3-25 17:26:59 | 只看該作者
25#
發(fā)表于 2025-3-25 20:52:11 | 只看該作者
Introduction,systematized and brought together under the heading of the ., with its innumerable applications to physics and mechanics. Attention was devoted principally to the analysis of . and . defined over the entire space or restricted to some smooth manifold. The extremum conditions in this case are the . (
26#
發(fā)表于 2025-3-26 03:42:57 | 只看該作者
Supporting Hyperplanes and Extremal Points,e closed hyperplane . is called a . for A at the point x.. The geometric sense of a supporting hyperplane is quite simple: the set A lies on one side of the hyperplane and cuts it in one point x. (Fig. 5).
27#
發(fā)表于 2025-3-26 05:40:43 | 只看該作者
28#
發(fā)表于 2025-3-26 09:56:00 | 只看該作者
Calculation of Dual Cones,plication of the Dubovitskii-Milyutin theorem to determine necessary conditions for an extremum, it remains to show how one constructs dual cones, This we now proceed to do. Some results in this connection were presented in Lecture 5 (Lemmas 5.2 to 5.10).
29#
發(fā)表于 2025-3-26 15:09:33 | 只看該作者
30#
發(fā)表于 2025-3-26 18:35:42 | 只看該作者
Sufficient Extremum Conditions,re also sufficient. Of course, elementary examples show that in general this is not true. Nevertheless, we shall prove that, under certain additional assumptions, the necessary extremum conditions are also sufficient, in an important class of extremal problems — convex problems. Sufficient condition
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 01:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
文山县| 通州区| 夏河县| 山丹县| 河池市| 安图县| 门头沟区| 津南区| 蒙山县| 民县| 东丰县| 观塘区| 南丹县| 阳谷县| 鸡西市| 承德市| 同德县| 三亚市| 定州市| 安顺市| 贵溪市| 阿勒泰市| 横山县| 巴南区| 东莞市| 云霄县| 安顺市| 南和县| 伊川县| 黎城县| 成都市| 长岭县| 台山市| 文水县| 元阳县| 满城县| 邹平县| 峨眉山市| 安远县| 武胜县| 德令哈市|