找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Lectures on Mathematical Theory of Extremum Problems; Igor Vladimirovich Girsanov,B. T. Poljak Book 1972 Springer-Verlag Berlin · Heidelbe

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 03:57:00 | 只看該作者
22#
發(fā)表于 2025-3-25 11:02:56 | 只看該作者
23#
發(fā)表于 2025-3-25 12:02:26 | 只看該作者
Sufficient Extremum Conditions. Examples,We now apply the results of the preceding lecture to various problems.
24#
發(fā)表于 2025-3-25 17:26:59 | 只看該作者
25#
發(fā)表于 2025-3-25 20:52:11 | 只看該作者
Introduction,systematized and brought together under the heading of the ., with its innumerable applications to physics and mechanics. Attention was devoted principally to the analysis of . and . defined over the entire space or restricted to some smooth manifold. The extremum conditions in this case are the . (
26#
發(fā)表于 2025-3-26 03:42:57 | 只看該作者
Supporting Hyperplanes and Extremal Points,e closed hyperplane . is called a . for A at the point x.. The geometric sense of a supporting hyperplane is quite simple: the set A lies on one side of the hyperplane and cuts it in one point x. (Fig. 5).
27#
發(fā)表于 2025-3-26 05:40:43 | 只看該作者
28#
發(fā)表于 2025-3-26 09:56:00 | 只看該作者
Calculation of Dual Cones,plication of the Dubovitskii-Milyutin theorem to determine necessary conditions for an extremum, it remains to show how one constructs dual cones, This we now proceed to do. Some results in this connection were presented in Lecture 5 (Lemmas 5.2 to 5.10).
29#
發(fā)表于 2025-3-26 15:09:33 | 只看該作者
30#
發(fā)表于 2025-3-26 18:35:42 | 只看該作者
Sufficient Extremum Conditions,re also sufficient. Of course, elementary examples show that in general this is not true. Nevertheless, we shall prove that, under certain additional assumptions, the necessary extremum conditions are also sufficient, in an important class of extremal problems — convex problems. Sufficient condition
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 08:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
镇康县| 眉山市| 枣庄市| 龙胜| 沈阳市| 绿春县| 西贡区| 罗城| 桃源县| 阜城县| 交城县| 台州市| 赤峰市| 雷州市| 望都县| 临城县| 佛冈县| 陆河县| 铜山县| 班玛县| 沅陵县| 沁源县| 荥经县| 永仁县| 登封市| 宝山区| 广宁县| 安泽县| SHOW| 罗甸县| 澜沧| 象山县| 盘山县| 农安县| 嘉黎县| 泗水县| 浪卡子县| 巴林右旗| 南丹县| 芦山县| 原阳县|