找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Lectures on Mathematical Theory of Extremum Problems; Igor Vladimirovich Girsanov,B. T. Poljak Book 1972 Springer-Verlag Berlin · Heidelbe

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 03:57:00 | 只看該作者
22#
發(fā)表于 2025-3-25 11:02:56 | 只看該作者
23#
發(fā)表于 2025-3-25 12:02:26 | 只看該作者
Sufficient Extremum Conditions. Examples,We now apply the results of the preceding lecture to various problems.
24#
發(fā)表于 2025-3-25 17:26:59 | 只看該作者
25#
發(fā)表于 2025-3-25 20:52:11 | 只看該作者
Introduction,systematized and brought together under the heading of the ., with its innumerable applications to physics and mechanics. Attention was devoted principally to the analysis of . and . defined over the entire space or restricted to some smooth manifold. The extremum conditions in this case are the . (
26#
發(fā)表于 2025-3-26 03:42:57 | 只看該作者
Supporting Hyperplanes and Extremal Points,e closed hyperplane . is called a . for A at the point x.. The geometric sense of a supporting hyperplane is quite simple: the set A lies on one side of the hyperplane and cuts it in one point x. (Fig. 5).
27#
發(fā)表于 2025-3-26 05:40:43 | 只看該作者
28#
發(fā)表于 2025-3-26 09:56:00 | 只看該作者
Calculation of Dual Cones,plication of the Dubovitskii-Milyutin theorem to determine necessary conditions for an extremum, it remains to show how one constructs dual cones, This we now proceed to do. Some results in this connection were presented in Lecture 5 (Lemmas 5.2 to 5.10).
29#
發(fā)表于 2025-3-26 15:09:33 | 只看該作者
30#
發(fā)表于 2025-3-26 18:35:42 | 只看該作者
Sufficient Extremum Conditions,re also sufficient. Of course, elementary examples show that in general this is not true. Nevertheless, we shall prove that, under certain additional assumptions, the necessary extremum conditions are also sufficient, in an important class of extremal problems — convex problems. Sufficient condition
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 08:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安丘市| 桂林市| 汕尾市| 都兰县| 海丰县| 合川市| 德昌县| 孝昌县| 莱州市| 伊吾县| 贵德县| 若尔盖县| 鄢陵县| 白城市| 津南区| 高州市| 福安市| 道真| 保山市| 大冶市| 遵化市| 四会市| 华宁县| 顺义区| 河南省| 呼图壁县| 上饶县| 蒲江县| 海林市| 新建县| 宝坻区| 金塔县| 辉南县| 晋城| 方山县| 南京市| 精河县| 睢宁县| 光山县| 临沂市| 蓬莱市|