找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lectures on Integrable Systems; Jens Hoppe Book 1992 Springer-Verlag Berlin Heidelberg 1992 Dynamische Systeme.Hamiltonian.Hamiltonian mec

[復(fù)制鏈接]
樓主: Awkward
31#
發(fā)表于 2025-3-26 23:56:07 | 只看該作者
32#
發(fā)表于 2025-3-27 04:15:46 | 只看該作者
33#
發(fā)表于 2025-3-27 08:31:26 | 只看該作者
34#
發(fā)表于 2025-3-27 12:32:02 | 只看該作者
Lectures on Integrable Systems978-3-540-47274-2Series ISSN 0940-7677
35#
發(fā)表于 2025-3-27 15:44:56 | 只看該作者
Classical Integrability of the Calogero-Moser Systems,We have seen that if one defines an . × . matrix . as . one can write the equations of motion belonging to . in the form . where . is given by
36#
發(fā)表于 2025-3-27 20:32:24 | 只看該作者
Algebraic Approach to ,, + ,/,, Interactions,Consider . Let us recall the situation for α = 0: . Without taking into account the boundary condition at 0, the eigenfunctions are . where the ..(.) are Hermite polynomials. Because of the boundary condition φ(0) = 0 only odd . (= 2. + 1) are allowed:
37#
發(fā)表于 2025-3-27 22:42:52 | 只看該作者
38#
發(fā)表于 2025-3-28 05:38:44 | 只看該作者
The Classical Non-Periodic Toda Lattice,Consider a system of . particles whose dynamics is governed by . (note that any interaction of the form . with . . > 0 leads to (6.1) by rescaling and shifting . . and .).
39#
發(fā)表于 2025-3-28 08:19:25 | 只看該作者
Infinite Dimensional Toda Systems,Let us now use . → ∞ limits of gl(., ?) in the context of a concrete physical model, the periodic Toda chain:
40#
發(fā)表于 2025-3-28 13:29:33 | 只看該作者
Differential Lax Operators,Instead of considering Lax pairs of infinite dimensional matrices (implying specific basis in vector spaces of countable dimension) one often looks at Lax equations . where . and . are differential operators of order . and ., respectively,
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 07:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
利津县| 肇州县| 始兴县| 巴里| 濮阳县| 长武县| 蓝山县| 武山县| 扬州市| 沂源县| 香格里拉县| 和硕县| 渝中区| 沅陵县| 新宾| 云安县| 乌海市| 新平| 宁阳县| 剑阁县| 桦南县| 北碚区| 大荔县| 怀远县| 汉川市| 北流市| 沅陵县| 湘潭市| 蓝山县| 南城县| 沾化县| 古丈县| 颍上县| 密山市| 三江| 南部县| 铜山县| 防城港市| 济源市| 石景山区| 鸡东县|