找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

1234
返回列表
打印 上一主題 下一主題

Titlebook: Lectures on Hyperbolic Geometry; Riccardo Benedetti,Carlo Petronio Textbook 1992 Springer-Verlag Berlin Heidelberg 1992 Cohomology.Flat Fi

[復(fù)制鏈接]
樓主: 撕成碎片
31#
發(fā)表于 2025-3-27 00:24:06 | 只看該作者
0172-5939 g results and also opened up new questions. The book concerns the geometry of manifolds and in particular hyperbolic manifolds; its aim is to provide an exposition of some fundamental results, and to be as far as possible self-contained, complete, detailed and unified. Since it starts from the basic
32#
發(fā)表于 2025-3-27 03:07:31 | 只看該作者
Textbook 1992and also opened up new questions. The book concerns the geometry of manifolds and in particular hyperbolic manifolds; its aim is to provide an exposition of some fundamental results, and to be as far as possible self-contained, complete, detailed and unified. Since it starts from the basics and it r
33#
發(fā)表于 2025-3-27 05:44:06 | 只看該作者
Hyperbolic Manifolds and the Compact Two-dimensional Case,omplete then it can be obtained as a quotient of hyperbolic space). Afterwards we shall consider the special case of compact surfaces and we shall give a complete classification of the hyperbolic structures on a surface of fixed genus (that is we shall give a parametrization of the so-called Teichmüller space).
34#
發(fā)表于 2025-3-27 12:08:18 | 只看該作者
The Space of Hyperbolic Manifolds and the Volume Function,t such an invariant is (topologically) complete for . = 2 in the compact case, and it may be proved that in the finite-volume case it becomes complete together with the number of cusp ends (“punctures”). Hence the problem of studying the volume function arises quite naturally: this is the aim of the present chapter.
35#
發(fā)表于 2025-3-27 16:33:36 | 只看該作者
36#
發(fā)表于 2025-3-27 19:55:17 | 只看該作者
37#
發(fā)表于 2025-3-27 23:23:23 | 只看該作者
Miodrag LovricThis is the first attempt in Statistics to engage the most recognized international authors Including the most prominent authors from many developing countries To write relatively brief papers on topi
1234
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 18:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
綦江县| 陵川县| 徐汇区| 水富县| 马鞍山市| 泰兴市| 中山市| 吉安县| 禄丰县| 洪洞县| 遂川县| 道孚县| 图们市| 余庆县| 贵南县| 二手房| 阿拉善盟| 嵊泗县| 都昌县| 英超| 大姚县| 永定县| 镇安县| 潍坊市| 富川| 汤阴县| 泊头市| 双流县| 柏乡县| 虞城县| 图片| 杨浦区| 启东市| 江西省| 菏泽市| 土默特左旗| 烟台市| 仙游县| 古田县| 太仓市| SHOW|