找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Lectures on Finitely Generated Solvable Groups; Katalin A. Bencsath,Marianna C. Bonanome,Marcos Zy Book 2013 Katalin A. Bencsath, Marianna

[復(fù)制鏈接]
樓主: ACRO
21#
發(fā)表于 2025-3-25 07:03:07 | 只看該作者
22#
發(fā)表于 2025-3-25 08:40:38 | 只看該作者
23#
發(fā)表于 2025-3-25 13:45:50 | 只看該作者
24#
發(fā)表于 2025-3-25 16:28:07 | 只看該作者
,The Bieri–Strebel Theorems,ented groups with an infinite cyclic quotient: such a group is either an ascending .-extension or else contains a free group of rank 2. An immediate consequence of the second theorem is that a solvable finitely presented group is either finite or else is virtually an ascending .-extension of a finitely generated solvable group.
25#
發(fā)表于 2025-3-25 20:09:15 | 只看該作者
26#
發(fā)表于 2025-3-26 02:06:20 | 只看該作者
Tools: Presentations and Their Calculus,We introduce group presentations, present Von Dyck’s lemma and Tietze’s theorem on their transformations. We bring in an important result by B.H. Neumann about finitely presentable groups.
27#
發(fā)表于 2025-3-26 06:58:33 | 只看該作者
28#
發(fā)表于 2025-3-26 09:43:46 | 只看該作者
29#
發(fā)表于 2025-3-26 14:57:37 | 只看該作者
30#
發(fā)表于 2025-3-26 18:16:47 | 只看該作者
An Embedding Theorem for Finitely Generated Metabelian Groups,The theorem we present, due to G. Baumslag, is a milestone in the study of metabelian group theory and is a refinement of a 1961 result by Higman. It states that any finitely generated metabelian group can be embedded in a finitely presented metabelian group.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 16:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
三江| 麻城市| 喀喇| 江都市| 务川| 苍梧县| 孝感市| 馆陶县| 五常市| 沅江市| 尼玛县| 富川| 扬中市| 泸溪县| 汉川市| 合作市| 丰宁| 叙永县| 芜湖县| 铜山县| 榆林市| 嘉荫县| 长武县| 尚义县| 兴宁市| 镇巴县| 平阳县| 南澳县| 昌宁县| 台东市| 塔河县| 和平县| 织金县| 湟中县| 灌云县| 资源县| 平利县| 安宁市| 凤庆县| 筠连县| 丹棱县|