找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lectures on Constructive Approximation; Fourier, Spline, and Volker Michel Textbook 2013 Springer Science+Business Media New York 2013 Four

[復(fù)制鏈接]
樓主: incontestable
31#
發(fā)表于 2025-3-26 22:06:00 | 只看該作者
32#
發(fā)表于 2025-3-27 02:08:56 | 只看該作者
33#
發(fā)表于 2025-3-27 05:21:54 | 只看該作者
Spherical Wavelet Analysisapplied to numerous geodetic and geophysical problems and have been adapted for several other classes of tasks (e.g., the approximation of vectorial and tensorial functions) since their introduction. These wavelets have similar features in comparison to Euclidean wavelets, although several aspects b
34#
發(fā)表于 2025-3-27 09:35:03 | 只看該作者
Spherical Slepian Functionsonics are ideal to represent global phenomena or structures with, at least, a very large spatial extension. The localized basis functions discussed so far are isotropic, that is, they are associated to zonal functions.
35#
發(fā)表于 2025-3-27 14:31:39 | 只看該作者
36#
發(fā)表于 2025-3-27 18:36:47 | 只看該作者
Textbook 2013s as they occur in the geosciences and medical imaging. It comprises the author’s lectures on classical approximation methods based on orthogonal polynomials and selected modern tools such as splines and wavelets..Methods for approximating functions on the real line are treated first, as they provid
37#
發(fā)表于 2025-3-28 01:31:44 | 只看該作者
2296-5009 trations included to optimize the understanding of topics.Co.Lectures on Constructive Approximation: Fourier, Spline, and Wavelet Methods on the Real Line, the Sphere, and the Ball .focuses on spherical problems as they occur in the geosciences and medical imaging. It comprises the author’s lectures
38#
發(fā)表于 2025-3-28 05:16:33 | 只看該作者
Basic Aspectsalized trial functions, such as splines, wavelets, and Slepian functions, on the sphere. We will also see that the spherical splines and wavelets have analogous properties in comparison to their 1D counterparts..Before we can discuss the really interesting stuff, we need some definitions, notations, and basic propositions of spherical analysis.
39#
發(fā)表于 2025-3-28 09:50:09 | 只看該作者
40#
發(fā)表于 2025-3-28 14:01:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 07:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
遂昌县| 玛曲县| 白河县| 北安市| 五莲县| 广河县| 邓州市| 密山市| 新昌县| 环江| 托克逊县| 新宾| 陆丰市| 连州市| 祁连县| 汉阴县| 闵行区| 新民市| 越西县| 瑞昌市| 大城县| 石渠县| 方山县| 平果县| 聂拉木县| 丰顺县| 通江县| 佛学| 新泰市| 亳州市| 无锡市| 闽侯县| 江都市| 惠东县| 兴义市| 荔浦县| 腾冲县| 迭部县| 汝城县| 江北区| 连南|