找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Lectures on Complex Integration; A. O. Gogolin,Elena G. Tsitsishvili,Andreas Komnik Textbook 2014 Springer International Publishing Switze

[復(fù)制鏈接]
樓主: 調(diào)戲
21#
發(fā)表于 2025-3-25 03:42:03 | 只看該作者
22#
發(fā)表于 2025-3-25 08:47:37 | 只看該作者
23#
發(fā)表于 2025-3-25 11:59:36 | 只看該作者
24#
發(fā)表于 2025-3-25 16:58:39 | 只看該作者
25#
發(fā)表于 2025-3-25 20:35:22 | 只看該作者
Solutions to the Problems,In polar coordinates . we have: .. If we take the limit . ‘radially’, i.e. . first and then ., by definition of the derivative we obtain
26#
發(fā)表于 2025-3-26 00:19:52 | 只看該作者
https://doi.org/10.1007/978-3-319-00212-5Branch Cut Integration; Complex Integration; Contour Integrals; Examples and Solutions in Complex Integ
27#
發(fā)表于 2025-3-26 08:05:27 | 只看該作者
28#
發(fā)表于 2025-3-26 12:06:30 | 只看該作者
Textbook 2014goal of the book is to introduce the reader to this beautiful area of mathematics and to teach him or her how to use these methods to solve a variety of problems ranging from computation of integrals to solving difficult integral equations. This is done with a help of numerous examples and problems with detailed solutions.
29#
發(fā)表于 2025-3-26 13:25:02 | 只看該作者
Textbook 2014icated integrals which are effortlessly computed after reshaping them into integrals along contours, as well as apparently difficult differential and integral equations, which can be elegantly solved using similar methods. To use them is sometimes?routine but in many cases it borders on an art. The
30#
發(fā)表于 2025-3-26 17:52:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 21:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
金昌市| 天峻县| 阿瓦提县| 霍城县| 南京市| 邹平县| 中西区| 汽车| 和林格尔县| 同仁县| 岐山县| 西乡县| 惠来县| 巨野县| 张家港市| 神池县| 永登县| 夏河县| 荥阳市| 东乡| 隆回县| 邵阳县| 宜君县| 云梦县| 体育| 哈尔滨市| 外汇| 红安县| 渝北区| 隆化县| 宁阳县| 从江县| 额尔古纳市| 汶川县| 雅江县| 灵山县| 海丰县| 京山县| 历史| 洪江市| 嘉禾县|