找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lectures on Complex Integration; A. O. Gogolin,Elena G. Tsitsishvili,Andreas Komnik Textbook 2014 Springer International Publishing Switze

[復(fù)制鏈接]
樓主: 調(diào)戲
21#
發(fā)表于 2025-3-25 03:42:03 | 只看該作者
22#
發(fā)表于 2025-3-25 08:47:37 | 只看該作者
23#
發(fā)表于 2025-3-25 11:59:36 | 只看該作者
24#
發(fā)表于 2025-3-25 16:58:39 | 只看該作者
25#
發(fā)表于 2025-3-25 20:35:22 | 只看該作者
Solutions to the Problems,In polar coordinates . we have: .. If we take the limit . ‘radially’, i.e. . first and then ., by definition of the derivative we obtain
26#
發(fā)表于 2025-3-26 00:19:52 | 只看該作者
https://doi.org/10.1007/978-3-319-00212-5Branch Cut Integration; Complex Integration; Contour Integrals; Examples and Solutions in Complex Integ
27#
發(fā)表于 2025-3-26 08:05:27 | 只看該作者
28#
發(fā)表于 2025-3-26 12:06:30 | 只看該作者
Textbook 2014goal of the book is to introduce the reader to this beautiful area of mathematics and to teach him or her how to use these methods to solve a variety of problems ranging from computation of integrals to solving difficult integral equations. This is done with a help of numerous examples and problems with detailed solutions.
29#
發(fā)表于 2025-3-26 13:25:02 | 只看該作者
Textbook 2014icated integrals which are effortlessly computed after reshaping them into integrals along contours, as well as apparently difficult differential and integral equations, which can be elegantly solved using similar methods. To use them is sometimes?routine but in many cases it borders on an art. The
30#
發(fā)表于 2025-3-26 17:52:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 23:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
澄城县| 三门峡市| 泗水县| 云梦县| 宿迁市| 乐业县| 凤台县| 滦平县| 绥阳县| 苏尼特右旗| 唐海县| 三门峡市| 腾冲县| 东丰县| 彭州市| 肇东市| 错那县| 信阳市| 南江县| 普洱| 乐业县| 太保市| 巴彦县| 当阳市| 泸定县| 酒泉市| 石河子市| 金山区| 大悟县| 衢州市| 临泉县| 铅山县| 大邑县| 温泉县| 新和县| 丹凤县| 巴青县| 榆林市| 丁青县| 利津县| 鹿邑县|