找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lectures on Algebraic Quantum Groups; Ken A. Brown,Ken R. Goodearl Textbook 2002 Springer Basel AG 2002 algebra.algebraic group.quantum gr

[復(fù)制鏈接]
樓主: vitamin-D
21#
發(fā)表于 2025-3-25 03:24:04 | 只看該作者
22#
發(fā)表于 2025-3-25 11:31:13 | 只看該作者
23#
發(fā)表于 2025-3-25 11:54:13 | 只看該作者
24#
發(fā)表于 2025-3-25 16:58:36 | 只看該作者
25#
發(fā)表于 2025-3-25 21:03:02 | 只看該作者
26#
發(fā)表于 2025-3-26 03:58:33 | 只看該作者
27#
發(fā)表于 2025-3-26 08:10:04 | 只看該作者
Generic Quantized Coordinate Rings of Semisimple Groups,ingle-parameter quantized coordinate rings ... with . not a root of unity; the root of unity case will be discussed in Chapter III.7. As with quantized enveloping algebras, . is just a suggestive label, and quantized coordinate rings for . can be defined over (almost) arbitrary fields. Since ... is
28#
發(fā)表于 2025-3-26 12:21:31 | 只看該作者
29#
發(fā)表于 2025-3-26 15:07:41 | 只看該作者
Homological Conditions, the supremum of the projective dimensions of the right R-modules. The.is defined analogously. Recall that the right and left global dimensions of a noetherian ring coincide.,Corollary 9.23]. Hence, we just write gl.dim(R) for this dimension. It is also known that if inj.dim(RR) and inj.dim(RR) are
30#
發(fā)表于 2025-3-26 20:49:13 | 只看該作者
Links and Blocks,decompose A as a finite direct sum of indecomposable (and necessarily Artinian) rings. Equivalently, where the ei are.(Central idempotents are.if their product is zero; a central idempotent is.if it is non-zero and it cannot be written as the sum of two orthogonal non-zero central idempotents.) It’s
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 03:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
兰坪| 漾濞| 英超| 栖霞市| 乌海市| 岗巴县| 综艺| 探索| 五常市| 南靖县| 那曲县| 湖口县| 呼和浩特市| 正定县| 德化县| 靖远县| 清苑县| 江北区| 义马市| 焉耆| 江永县| 正定县| 邹平县| 尖扎县| 北安市| 丰都县| 亚东县| 棋牌| 广昌县| 天峻县| 印江| 朝阳区| 木兰县| 鲁山县| 项城市| 桑植县| 石狮市| 怀化市| 湖南省| 安平县| 乳源|